scispace - formally typeset
Search or ask a question
Institution

École Polytechnique Fédérale de Lausanne

FacilityLausanne, Switzerland
About: École Polytechnique Fédérale de Lausanne is a facility organization based out in Lausanne, Switzerland. It is known for research contribution in the topics: Population & Catalysis. The organization has 44041 authors who have published 98296 publications receiving 4372092 citations. The organization is also known as: EPFL & ETHL.


Papers
More filters
Journal ArticleDOI
TL;DR: Recent studies with artificial model membranes have highlighted the striking resemblance of the mechanisms of membrane permeabilization of amyloid-forming proteins to those of pore-forming toxins and antimicrobial peptides.
Abstract: The toxicity of amyloid-forming proteins is correlated with their interactions with cell membranes. Binding events between amyloidogenic proteins and membranes result in mutually disruptive structural perturbations, which are associated with toxicity. Membrane surfaces promote the conversion of amyloid-forming proteins into toxic aggregates, and amyloidogenic proteins, in turn, compromise the structural integrity of the cell membrane. Recent studies with artificial model membranes have highlighted the striking resemblance of the mechanisms of membrane permeabilization of amyloid-forming proteins to those of pore-forming toxins and antimicrobial peptides.

532 citations

Proceedings Article
25 Apr 2012
TL;DR: This paper proposes a novel way to augment model checking with symbolic execution of event handlers (to identify representative packets that exercise code paths on the controller) and presents a simplified OpenFlow switch model (to reduce the state space), and effective strategies for generating event interleavings likely to uncover bugs.
Abstract: The emergence of OpenFlow-capable switches enables exciting new network functionality, at the risk of programming errors that make communication less reliable. The centralized programming model, where a single controller program manages the network, seems to reduce the likelihood of bugs. However, the system is inherently distributed and asynchronous, with events happening at different switches and end hosts, and inevitable delays affecting communication with the controller. In this paper, we present efficient, systematic techniques for testing unmodified controller programs. Our NICE tool applies model checking to explore the state space of the entire system--the controller, the switches, and the hosts. Scalability is the main challenge, given the diversity of data packets, the large system state, and the many possible event orderings. To address this, we propose a novel way to augment model checking with symbolic execution of event handlers (to identify representative packets that exercise code paths on the controller). We also present a simplified OpenFlow switch model (to reduce the state space), and effective strategies for generating event interleavings likely to uncover bugs. Our prototype tests Python applications on the popular NOX platform. In testing three real applications--a MAC-learning switch, in-network server load balancing, and energy-efficient traffic engineering--we uncover eleven bugs.

531 citations

Journal ArticleDOI
TL;DR: The possibility and limits for increasing the content and bioavailability of iron, zinc and Ca in edible parts of staple crops, such as cereals, pulses, roots and tubers as a way to combat mineral deficiencies in human populations are reviewed.
Abstract: This paper reviews the possibility and limits for increasing the content and bioavailability of iron (Fe), zinc (Zn) and calcium (Ca) in edible parts of staple crops, such as cereals, pulses, roots and tubers as a way to combat mineral deficiencies in human populations. Theoretically, this could be achieved by increasing the total level of Fe, Zn and Ca in the plant foods, while at the same time increasing the concentration of compounds which promote their uptake (ascorbic acid), and/or by decreasing the concentration of compounds which inhibit their absorption (phytic acid or phenolic compounds). The content of Zn and Ca in grains and fruits can in some cases be increased through soil and/or foliar applications of Zn and Ca fertilisers. Plant breeding and genetic engineering techniques, however, have the greatest potential to increase Fe and Zn content in grains, roots and tubers. The possibility of enhancing Ca and ascorbic acid content in plant foods by plant breeding and genetic engineering remained to be explored. The critical factor is to ensure that the extra minerals have an adequate bioavailability for man. Given the important role of phytic acid and polyphenols in plant physiology, reducing the levels of these compounds in the edible parts of plants does not appear to be wise although introduction of phytases which are active during digestion is an exciting possibility.

531 citations

Journal ArticleDOI
TL;DR: A distributed, infrastructure-free positioning algorithm that does not rely on GPS is proposed, which uses the distances between the nodes to build a relative coordinate system in which the node positions are computed in two dimensions.
Abstract: We consider the problem of node positioning in ad hoc networks. We propose a distributed, infrastructure-free positioning algorithm that does not rely on GPS (Global Positioning System). Instead, the algorithm uses the distances between the nodes to build a relative coordinate system in which the node positions are computed in two dimensions. Despite the distance measurement errors and the motion of the nodes, the algorithm provides sufficient location information and accuracy to support basic network functions. Examples of applications where this algorithm can be used include Location Aided Routing [10] and Geodesic Packet Forwarding [2]. Another example are sensor networks, where mobility is less of a problem. The main contribution of this work is to define and compute relative positions of the nodes in an ad hoc network without using GPS. We further explain how the proposed approach can be applied to wide area ad hoc networks.

531 citations

Journal ArticleDOI
TL;DR: To investigate synaptic events underlying sensory perception, whole-cell membrane potential recordings of barrel cortex neurons in awake mice while recording whisker-related behavior recorded slow, large-amplitude membrane potential changes, which switched during whisking to small, fast fluctuations that were correlated with whisker position.
Abstract: To investigate synaptic events underlying sensory perception, we made whole-cell membrane potential recordings of barrel cortex neurons in awake mice while recording whisker-related behavior. During quiet periods, we recorded slow, large-amplitude membrane potential changes, which switched during whisking to small, fast fluctuations that were correlated with whisker position. Robust subthreshold responses were evoked by passive whisker stimulation during quiet behavior and by active whisker contact with an object.

531 citations


Authors

Showing all 44420 results

NameH-indexPapersCitations
Michael Grätzel2481423303599
Ruedi Aebersold182879141881
Eliezer Masliah170982127818
Richard H. Friend1691182140032
G. A. Cowan1592353172594
Ian A. Wilson15897198221
Johan Auwerx15865395779
Menachem Elimelech15754795285
A. Artamonov1501858119791
Melody A. Swartz1481304103753
Henry J. Snaith146511123155
Kurt Wüthrich143739103253
Richard S. J. Frackowiak142309100726
Jean-Paul Kneib13880589287
Kevin J. Tracey13856182791
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

98% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

96% related

Georgia Institute of Technology
119K papers, 4.6M citations

96% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

96% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023234
2022704
20215,247
20205,644
20195,432
20185,094