scispace - formally typeset
Search or ask a question
Institution

École Polytechnique Fédérale de Lausanne

FacilityLausanne, Switzerland
About: École Polytechnique Fédérale de Lausanne is a facility organization based out in Lausanne, Switzerland. It is known for research contribution in the topics: Population & Catalysis. The organization has 44041 authors who have published 98296 publications receiving 4372092 citations. The organization is also known as: EPFL & ETHL.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors review important mechanisms that contribute towards elevation-dependent warming, such as snow albedo and surface-based feedbacks, water vapour changes and latent heat release, surface water vapours and radiative flux changes, surface heat loss and temperature change; and aerosols.
Abstract: There is growing evidence that the rate of warming is amplified with elevation, such that high-mountain environments experience more rapid changes in temperature than environments at lower elevations. Elevation-dependent warming (EDW) can accelerate the rate of change in mountain ecosystems, cryospheric systems, hydrological regimes and biodiversity. Here we review important mechanisms that contribute towards EDW: snow albedo and surface-based feedbacks; water vapour changes and latent heat release; surface water vapour and radiative flux changes; surface heat loss and temperature change; and aerosols. All lead to enhanced warming with elevation (or at a critical elevation), and it is believed that combinations of these mechanisms may account for contrasting regional patterns of EDW. We discuss future needs to increase knowledge of mountain temperature trends and their controlling mechanisms through improved observations, satellite-based remote sensing and model simulations.

1,628 citations

Journal ArticleDOI
TL;DR: The characteristics and applications of SPION in the biomedical sector are introduced and discussed, and superparamagnetic nanoparticles based on a core consisting of iron oxides that can be targeted through external magnets are discussed.

1,626 citations

Journal ArticleDOI
TL;DR: In this article, an approach to prepare perovskite films of high electronic quality by using poly(methyl methacrylate) (PMMA) as a template to control nucleation and crystal growth is presented.
Abstract: The past several years have witnessed the rapid emergence of a class of solar cells based on mixed organic–inorganic halide perovskites. Today’s state-of-the-art perovskite solar cells (PSCs) employ various methods to enhance nucleation and improve the smoothness of the perovskite films formed via solution processing. However, the lack of precise control over the crystallization process creates a risk of forming unwanted defects, for example, pinholes and grain boundaries. Here, we introduce an approach to prepare perovskite films of high electronic quality by using poly(methyl methacrylate) (PMMA) as a template to control nucleation and crystal growth. We obtain shiny smooth perovskite films of excellent electronic quality, as manifested by a remarkably long photoluminescence lifetime. We realize stable PSCs with excellent reproducibility showing a power conversion efficiency (PCE) of up to 21.6% and a certified PCE of 21.02% under standard AM 1.5G reporting conditions. Controlling the crystallization process of perovskite films is crucial to obtaining high efficiency in perovskite solar cells. Bi et al. propose the use of poly(methyl methacrylate) as a template for the controlled nucleation and growth of perovskite crystals achieving efficiency of 21.6%.

1,626 citations

Journal ArticleDOI
TL;DR: The IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry (IUPAC-GKDE) as mentioned in this paper has published a series of data sheets for organic halogen species.
Abstract: This article, the fourth in the series, presents kinetic and photochemical data sheets evaluated by the IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. It covers the gas phase and photochemical reactions of organic halogen species, which were last published in 1997, and were updated on the IUPAC website in 2006/07. The article consists of a summary sheet, containing the recommended kinetic parameters for the evaluated reactions, and four appendices containing the data sheets, which provide information upon which the recommendations are made.

1,623 citations

Journal ArticleDOI
05 Apr 2021-Nature
TL;DR: In this paper, the pseudo-halide anion formate (HCOO−) was used to suppress anion-vacancy defects that are present at grain boundaries and at the surface of the perovskite films.
Abstract: Metal halide perovskites of the general formula ABX3—where A is a monovalent cation such as caesium, methylammonium or formamidinium; B is divalent lead, tin or germanium; and X is a halide anion—have shown great potential as light harvesters for thin-film photovoltaics1–5. Among a large number of compositions investigated, the cubic α-phase of formamidinium lead triiodide (FAPbI3) has emerged as the most promising semiconductor for highly efficient and stable perovskite solar cells6–9, and maximizing the performance of this material in such devices is of vital importance for the perovskite research community. Here we introduce an anion engineering concept that uses the pseudo-halide anion formate (HCOO−) to suppress anion-vacancy defects that are present at grain boundaries and at the surface of the perovskite films and to augment the crystallinity of the films. The resulting solar cell devices attain a power conversion efficiency of 25.6 per cent (certified 25.2 per cent), have long-term operational stability (450 hours) and show intense electroluminescence with external quantum efficiencies of more than 10 per cent. Our findings provide a direct route to eliminate the most abundant and deleterious lattice defects present in metal halide perovskites, providing a facile access to solution-processable films with improved optoelectronic performance. Incorporation of the pseudo-halide anion formate during the fabrication of α-FAPbI3 perovskite films eliminates deleterious iodide vacancies, yielding solar cell devices with a certified power conversion efficiency of 25.21 per cent and long-term operational stability.

1,616 citations


Authors

Showing all 44420 results

NameH-indexPapersCitations
Michael Grätzel2481423303599
Ruedi Aebersold182879141881
Eliezer Masliah170982127818
Richard H. Friend1691182140032
G. A. Cowan1592353172594
Ian A. Wilson15897198221
Johan Auwerx15865395779
Menachem Elimelech15754795285
A. Artamonov1501858119791
Melody A. Swartz1481304103753
Henry J. Snaith146511123155
Kurt Wüthrich143739103253
Richard S. J. Frackowiak142309100726
Jean-Paul Kneib13880589287
Kevin J. Tracey13856182791
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

98% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

96% related

Georgia Institute of Technology
119K papers, 4.6M citations

96% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

96% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023234
2022704
20215,247
20205,644
20195,432
20185,094