scispace - formally typeset
Search or ask a question
Institution

École Polytechnique Fédérale de Lausanne

FacilityLausanne, Switzerland
About: École Polytechnique Fédérale de Lausanne is a facility organization based out in Lausanne, Switzerland. It is known for research contribution in the topics: Population & Catalysis. The organization has 44041 authors who have published 98296 publications receiving 4372092 citations. The organization is also known as: EPFL & ETHL.


Papers
More filters
Journal ArticleDOI
TL;DR: The results identify a link between two protein kinases, previously thought to lie in unrelated, distinct pathways, that are associated with human diseases.

1,602 citations

Journal ArticleDOI
10 Jul 2009-Cell
TL;DR: Flow cytometry with label-retaining assays are combined to identify a population of dormant mouse HSCs (d-HSCs) within the lin(-)Sca1+cKit+CD150+CD48(-)CD34(-) population, indicating that d-H SCs harbor the vast majority of multilineage long-term self-renewal activity.

1,596 citations

Journal ArticleDOI
01 Jul 2016-Science
TL;DR: A simple vacuum flash–assisted solution processing method is devised to obtain shiny, smooth, crystalline perovskite films of high electronic quality over large areas, which enables the realization of highly efficient large-area PSCs for practical deployment.
Abstract: Metal halide perovskite solar cells (PSCs) currently attract enormous research interest because of their high solar-to-electric power conversion efficiency (PCE) and low fabrication costs, but their practical development is hampered by difficulties in achieving high performance with large-size devices. We devised a simple vacuum flash-assisted solution processing method to obtain shiny, smooth, crystalline perovskite films of high electronic quality over large areas. This enabled us to fabricate solar cells with an aperture area exceeding 1 square centimeter, a maximum efficiency of 20.5%, and a certified PCE of 19.6%. By contrast, the best certified PCE to date is 15.6% for PSCs of similar size. We demonstrate that the reproducibility of the method is excellent and that the cells show virtually no hysteresis. Our approach enables the realization of highly efficient large-area PSCs for practical deployment.

1,586 citations

Book ChapterDOI
01 Jan 2002
TL;DR: Note: book Reference LCN-BOOK-2002-001 URL: http://diwww.epfl.ch/~gerstner/BUCH.html
Abstract: Note: book Reference LCN-BOOK-2002-001 URL: http://diwww.epfl.ch/~gerstner/BUCH.html Record created on 2006-12-12, modified on 2017-05-12

1,571 citations

Journal ArticleDOI
TL;DR: In this article, a two-step spin-coating procedure was used to control the size of the cuboid cuboid of CH(3)NH(3)-PbI(3), achieving an average efficiency exceeding 16% and best efficiency of 17%.
Abstract: Perovskite solar cells with submicrometre-thick CH(3)NH(3)PbI(3) or CH(3)NH(3)PbI(3-x)Cl(x) active layers show a power conversion efficiency as high as 15%. However, compared to the best-performing device, the average efficiency was as low as 12%, with a large standard deviation (s.d.). Here, we report perovskite solar cells with an average efficiency exceeding 16% and best efficiency of 17%. This was enabled by the growth of CH(3)NH(3)PbI(3) cuboids with a controlled size via a two-step spin-coating procedure. Spin-coating of a solution of CH(3)NH(3)I with different concentrations follows the spin-coating of PbI(2), and the cuboid size of CH(3)NH(3)PbI(3) is found to strongly depend on the concentration of CH(3)NH(3)I. Light-harvesting efficiency and charge-carrier extraction are significantly affected by the cuboid size. Under simulated one-sun illumination, average efficiencies of 16.4% (s.d. ± 0.35), 16.3% (s.d. ± 0.44) and 13.5% (s.d. ± 0.34) are obtained from solutions of CH(3)NH(3)I with concentrations of 0.038 M, 0.050 M and 0.063 M, respectively. By controlling the size of the cuboids of CH(3)NH(3)PbI(3) during their growth, we achieved the best efficiency of 17.01% with a photocurrent density of 21.64 mA cm(-2), open-circuit photovoltage of 1.056 V and fill factor of 0.741.

1,570 citations


Authors

Showing all 44420 results

NameH-indexPapersCitations
Michael Grätzel2481423303599
Ruedi Aebersold182879141881
Eliezer Masliah170982127818
Richard H. Friend1691182140032
G. A. Cowan1592353172594
Ian A. Wilson15897198221
Johan Auwerx15865395779
Menachem Elimelech15754795285
A. Artamonov1501858119791
Melody A. Swartz1481304103753
Henry J. Snaith146511123155
Kurt Wüthrich143739103253
Richard S. J. Frackowiak142309100726
Jean-Paul Kneib13880589287
Kevin J. Tracey13856182791
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

98% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

96% related

Georgia Institute of Technology
119K papers, 4.6M citations

96% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

96% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023234
2022704
20215,249
20205,644
20195,432
20185,094