scispace - formally typeset
Search or ask a question
Institution

École Polytechnique Fédérale de Lausanne

FacilityLausanne, Switzerland
About: École Polytechnique Fédérale de Lausanne is a facility organization based out in Lausanne, Switzerland. It is known for research contribution in the topics: Population & Catalysis. The organization has 44041 authors who have published 98296 publications receiving 4372092 citations. The organization is also known as: EPFL & ETHL.


Papers
More filters
Journal ArticleDOI
TL;DR: A DSC with unprecedented stable performance under both thermal stress and soaking with light, matching the durability criteria applied to silicon solar cells for outdoor applications is shown, fostering widespread practical application of dye-sensitized solar cells.
Abstract: Dye-sensitized nanocrystalline solar cells (DSC) have received considerable attention as a cost-effective alternative to conventional solar cells. One of the main factors that has hampered widespread practical use of DSC is the poor thermostability encountered so far with these devices. Here we show a DSC with unprecedented stable performance under both thermal stress and soaking with light, matching the durability criteria applied to silicon solar cells for outdoor applications. The cell uses the amphiphilic ruthenium sensitizer cis-RuLL'(SCN)(2) (L = 4,4'-dicarboxylic acid-2,2'-bipyridine, L' = 4,4'-dinonyl-2,2'-bipyridine) in conjunction with a quasi-solid-state polymer gel electrolyte, reaching an efficiency of >6% in full sunlight (air mass 1.5, 100 mW cm(-2)). A convenient and versatile new route is reported for the synthesis of the heteroleptic ruthenium complex, which plays a key role in achieving the high-temperature stability. Ultramicroelectrode voltammetric measurements show that the triiodide/iodide couple can perform charge transport freely in the polymer gel. The cell sustained heating for 1,000 h at 80 degrees C, maintaining 94% of its initial performance. The device also showed excellent stability under light soaking at 55 degrees C for 1,000 h in a solar simulator (100 mW cm(-2)) equipped with a ultraviolet filter. The present findings should foster widespread practical application of dye-sensitized solar cells.

1,541 citations

Journal ArticleDOI
TL;DR: Electrical transport measurements on MoS₂ FETs in different dielectric configurations are reported, showing clear evidence of the strong suppression of charged-impurity scattering in dual-gate devices with a top-gate dielectrics and a weaker than expected temperature dependence.
Abstract: Field-effect transistors based on molybdenum disulphide have latterly garnered significant interest. Their electrical transport characteristics are now studied for different dielectric configurations, and as a function of temperature.

1,539 citations

Journal ArticleDOI
TL;DR: Proposition d'une nouvelle methode, basee sur the theorie des perturbations dans laquelle la reponse au potentiel total est obtenue par iteration jusqu'a l'autocoherence, la sommation sur les bandes de conduction evitee grâce a une technique a fonction de Green.
Abstract: We present a new scheme to study the linear response of crystals which combines the advantages of the dielectric-matrix and supercell (``direct'') approaches yet avoids many of their drawbacks. The numerical complexity of the algorithm is of the same order as that of a self-consistent calculation for the unperturbed system. The method is not restricted to local perturbations as the dielectric-matrix one nor to short wavelengths as the direct one. As an application, we calculate the long-wavelength optical phonons in Si and GaAs, both transverse and longitudinal, using norm-conserving pseudopotentials, and without any use of supercells.

1,532 citations

Journal ArticleDOI
TL;DR: One-year stable perovskite devices are shown by engineering an ultra-stable 2D/3D (HOOC(CH2)4NH3)2PbI4/CH3NH3Pb mezzanine junction, which will enable the timely commercialization of perovSKite solar cells.
Abstract: Despite the impressive photovoltaic performances with power conversion efficiency beyond 22%, perovskite solar cells are poorly stable under operation, failing by far the market requirements. Various technological approaches have been proposed to overcome the instability problem, which, while delivering appreciable incremental improvements, are still far from a market-proof solution. Here we show one-year stable perovskite devices by engineering an ultra-stable 2D/3D (HOOC(CH2)4NH3)2PbI4/CH3NH3PbI3 perovskite junction. The 2D/3D forms an exceptional gradually-organized multi-dimensional interface that yields up to 12.9% efficiency in a carbon-based architecture, and 14.6% in standard mesoporous solar cells. To demonstrate the up-scale potential of our technology, we fabricate 10 × 10 cm2 solar modules by a fully printable industrial-scale process, delivering 11.2% efficiency stable for >10,000 h with zero loss in performances measured under controlled standard conditions. This innovative stable and low-cost architecture will enable the timely commercialization of perovskite solar cells. Up-scaling represents a key challenge for photovoltaics based on metal halide perovskites. Using a composite of 2D and 3D perovskites in combination with a printable carbon black/graphite counter electrode; Granciniet al., report 11.2% efficient modules stable over 10,000 hours.

1,531 citations

Journal ArticleDOI
TL;DR: An exact method is given which performs better than the Randall-Brown algorithm and is able to color larger graphs and the new heuristic methods, the classical methods, and the exact method are compared.
Abstract: This paper describes efficient new heuristic methods to color the vertices of a graph which rely upon the comparison of the degrees and structure of a graph. A method is developed which is exact for bipartite graphs and is an important part of heuristic procedures to find maximal cliques in general graphs. Finally an exact method is given which performs better than the Randall-Brown algorithm and is able to color larger graphs, and the new heuristic methods, the classical methods, and the exact method are compared.

1,510 citations


Authors

Showing all 44420 results

NameH-indexPapersCitations
Michael Grätzel2481423303599
Ruedi Aebersold182879141881
Eliezer Masliah170982127818
Richard H. Friend1691182140032
G. A. Cowan1592353172594
Ian A. Wilson15897198221
Johan Auwerx15865395779
Menachem Elimelech15754795285
A. Artamonov1501858119791
Melody A. Swartz1481304103753
Henry J. Snaith146511123155
Kurt Wüthrich143739103253
Richard S. J. Frackowiak142309100726
Jean-Paul Kneib13880589287
Kevin J. Tracey13856182791
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

98% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

96% related

Georgia Institute of Technology
119K papers, 4.6M citations

96% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

96% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023234
2022704
20215,247
20205,644
20195,432
20185,094