scispace - formally typeset
Search or ask a question
Institution

École Polytechnique Fédérale de Lausanne

FacilityLausanne, Switzerland
About: École Polytechnique Fédérale de Lausanne is a facility organization based out in Lausanne, Switzerland. It is known for research contribution in the topics: Population & Catalysis. The organization has 44041 authors who have published 98296 publications receiving 4372092 citations. The organization is also known as: EPFL & ETHL.


Papers
More filters
Journal ArticleDOI
TL;DR: Perovskites are of great interest in photovoltaic devices due to their panchromatic light absorption and ambipolar behavior and it will not be unrealistic to speculate that one day perovskite-based solar cells can match the capability and capacity of existing technologies.
Abstract: It is not often that the scientific community is blessed with a material, which brings enormous hopes and receives special attention. When it does, it expands at a rapid pace and its every dimension creates curiosity. One such material is perovskite, which has triggered the development of new device architectures in energy conversion. Perovskites are of great interest in photovoltaic devices due to their panchromatic light absorption and ambipolar behavior. Power conversion efficiencies have been doubled in less than a year and over 15% is being now measured in labs. Every digit increment in efficiency is being celebrated widely in the scientific community and is being discussed in industry. Here we provide a summary on the use of perovskite for inexpensive solar cells fabrication. It will not be unrealistic to speculate that one day perovskite-based solar cells can match the capability and capacity of existing technologies.

861 citations

Journal ArticleDOI
21 Oct 2016-Science
TL;DR: This paper reports that adding formaldehyde during biomass pretreatment produces a soluble lignin fraction that can be converted to guaiacyl and syringyl monomers at near theoretical yields during subsequent hydrogenolysis, three to seven times those obtained without formaldehyde.
Abstract: Practical, high-yield lignin depolymerization methods could greatly increase biorefinery productivity and profitability. However, development of these methods is limited by the presence of interunit carbon-carbon bonds within native lignin, and further by formation of such linkages during lignin extraction. We report that adding formaldehyde during biomass pretreatment produces a soluble lignin fraction that can be converted to guaiacyl and syringyl monomers at near theoretical yields during subsequent hydrogenolysis (47 mole % of Klason lignin for beech and 78 mole % for a high-syringyl transgenic poplar). These yields were three to seven times those obtained without formaldehyde, which prevented lignin condensation by forming 1,3-dioxane structures with lignin side-chain hydroxyl groups. By depolymerizing cellulose, hemicelluloses, and lignin separately, monomer yields were between 76 and 90 mole % for these three major biomass fractions.

860 citations

Proceedings ArticleDOI
03 Mar 2012
TL;DR: This work identifies the key micro-architectural needs of scale-out workloads, calling for a change in the trajectory of server processors that would lead to improved computational density and power efficiency in data centers.
Abstract: Emerging scale-out workloads require extensive amounts of computational resources. However, data centers using modern server hardware face physical constraints in space and power, limiting further expansion and calling for improvements in the computational density per server and in the per-operation energy. Continuing to improve the computational resources of the cloud while staying within physical constraints mandates optimizing server efficiency to ensure that server hardware closely matches the needs of scale-out workloads.In this work, we introduce CloudSuite, a benchmark suite of emerging scale-out workloads. We use performance counters on modern servers to study scale-out workloads, finding that today's predominant processor micro-architecture is inefficient for running these workloads. We find that inefficiency comes from the mismatch between the workload needs and modern processors, particularly in the organization of instruction and data memory systems and the processor core micro-architecture. Moreover, while today's predominant micro-architecture is inefficient when executing scale-out workloads, we find that continuing the current trends will further exacerbate the inefficiency in the future. In this work, we identify the key micro-architectural needs of scale-out workloads, calling for a change in the trajectory of server processors that would lead to improved computational density and power efficiency in data centers.

860 citations

Journal ArticleDOI
10 Jan 2006
TL;DR: This paper explains what network coding does and how it does it and discusses the implications of theoretical results on network coding for realistic settings and shows how network coding can be used in practice.
Abstract: Network coding is a new research area that may have interesting applications in practical networking systems. With network coding, intermediate nodes may send out packets that are linear combinations of previously received information. There are two main benefits of this approach: potential throughput improvements and a high degree of robustness. Robustness translates into loss resilience and facilitates the design of simple distributed algorithms that perform well, even if decisions are based only on partial information. This paper is an instant primer on network coding: we explain what network coding does and how it does it. We also discuss the implications of theoretical results on network coding for realistic settings and show how network coding can be used in practice

858 citations

Journal ArticleDOI
TL;DR: Information on collagen fiber waviness and orientation could be used to develop structural models of the adventitia, providing better means for analyzing and understanding the mechanical properties of vascular wall.
Abstract: Mechanical properties of the adventitia are largely determined by the organization of collagen fibers. Measurements on the waviness and orientation of collagen, particularly at the zero-stress state, are necessary to relate the structural organization of collagen to the mechanical response of the adventitia. Using the fluorescence collagen marker CNA38-OG488 and confocal laser scanning microscopy, we imaged collagen fibers in the adventitia of rabbit common carotid arteries ex vivo. The arteries were cut open along their longitudinal axes to get the zero-stress state. We used semi-manual and automatic techniques to measure parameters related to the waviness and orientation of fibers. Our results showed that the straightness parameter (defined as the ratio between the distances of endpoints of a fiber to its length) was distributed with a beta distribution (mean value 0.72, variance 0.028) and did not depend on the mean angle orientation of fibers. Local angular density distributions revealed four axially symmetric families of fibers with mean directions of 0°, 90°, 43° and −43°, with respect to the axial direction of the artery, and corresponding circular standard deviations of 40°, 47°, 37° and 37°. The distribution of local orientations was shifted to the circumferential direction when measured in arteries at the zero-load state (intact), as compared to arteries at the zero-stress state (cut-open). Information on collagen fiber waviness and orientation, such as obtained in this study, could be used to develop structural models of the adventitia, providing better means for analyzing and understanding the mechanical properties of vascular wall.

857 citations


Authors

Showing all 44420 results

NameH-indexPapersCitations
Michael Grätzel2481423303599
Ruedi Aebersold182879141881
Eliezer Masliah170982127818
Richard H. Friend1691182140032
G. A. Cowan1592353172594
Ian A. Wilson15897198221
Johan Auwerx15865395779
Menachem Elimelech15754795285
A. Artamonov1501858119791
Melody A. Swartz1481304103753
Henry J. Snaith146511123155
Kurt Wüthrich143739103253
Richard S. J. Frackowiak142309100726
Jean-Paul Kneib13880589287
Kevin J. Tracey13856182791
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

98% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

96% related

Georgia Institute of Technology
119K papers, 4.6M citations

96% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

96% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023234
2022704
20215,247
20205,644
20195,432
20185,094