scispace - formally typeset
Search or ask a question
Institution

Edith Cowan University

EducationPerth, Western Australia, Australia
About: Edith Cowan University is a education organization based out in Perth, Western Australia, Australia. It is known for research contribution in the topics: Population & Tourism. The organization has 4040 authors who have published 13529 publications receiving 339582 citations. The organization is also known as: Edith Cowan & ECU.


Papers
More filters
Journal ArticleDOI
TL;DR: Overall, the analyses point to several important sources of variation in δ15N enrichment and suggest that the most important of them are the main biochemical form of nitrogen excretion and nutritional status.
Abstract: Measurements of δ15N of consumers are usually higher than those of their diet. This general pattern is widely used to make inferences about trophic relationships in ecological studies, although the underlying mechanisms causing the pattern are poorly understood. However, there can be substantial variation in consumer-diet δ15N enrichment within this general pattern. We conducted an extensive literature review, which yielded 134 estimates from controlled studies of consumer-diet δ15N enrichment, to test the significance of several potential sources of variation by means of meta-analyses. We found patterns related to processes of nitrogen assimilation and excretion. There was a significant effect of the main biochemical form of nitrogenous waste: ammonotelic organisms show lower δ15N enrichment than ureotelic or uricotelic organisms. There were no significant differences between animals feeding on plant food, animal food, or manufactured mixtures, but detritivores yielded significantly lower estimates of enrichment. δ15N enrichment was found to increase significantly with the C:N ratio of the diet, suggesting that a nitrogen-poor diet can have an effect similar to that already documented for fasting organisms. There were also differences among taxonomic classes: molluscs and crustaceans generally yielded lower δ15N enrichment. The lower δ15N enrichment might be related to the fact that molluscs and crustaceans excrete mainly ammonia, or to the fact that many were detritivores. Organisms inhabiting marine environments yielded significantly lower estimates of δ15N enrichment than organisms inhabiting terrestrial or freshwater environments, a pattern that was influenced by the number of marine, ammonotelic, crustaceans and molluscs. Overall, our analyses point to several important sources of variation in δ15N enrichment and suggest that the most important of them are the main biochemical form of nitrogen excretion and nutritional status. The variance of estimates of δ15N enrichment, as well as the fact that enrichment may be different in certain groups of organisms should be taken into account in statistical approaches for studying diet and trophic relationships.

1,465 citations

Journal ArticleDOI
TL;DR: This assessment, the most comprehensive for any nation to-date, demonstrates the potential of conservation and restoration of VCE to underpin national policy development for reducing greenhouse gas emissions.
Abstract: Policies aiming to preserve vegetated coastal ecosystems (VCE; tidal marshes, mangroves and seagrasses) to mitigate greenhouse gas emissions require national assessments of blue carbon resources. Here, we present organic carbon (C) storage in VCE across Australian climate regions and estimate potential annual CO2 emission benefits of VCE conservation and restoration. Australia contributes 5–11% of the C stored in VCE globally (70–185 Tg C in aboveground biomass, and 1,055–1,540 Tg C in the upper 1 m of soils). Potential CO2 emissions from current VCE losses are estimated at 2.1–3.1 Tg CO2-e yr-1, increasing annual CO2 emissions from land use change in Australia by 12–21%. This assessment, the most comprehensive for any nation to-date, demonstrates the potential of conservation and restoration of VCE to underpin national policy development for reducing greenhouse gas emissions. Policies aiming to preserve vegetated coastal ecosystems (VCE) to mitigate greenhouse gas emissions require national assessments of blue carbon resources. Here the authors assessed organic carbon storage in VCE across Australian and the potential annual CO2 emission benefits of VCE conservation and find that Australia contributes substantially the carbon stored in VCE globally.

1,462 citations

Journal ArticleDOI
TL;DR: It appears that this acute response to resistance exercise is more critical to tissue growth and remodelling than chronic changes in resting hormonal concentrations, as many studies have not shown a significant change during resistance training despite increases in muscle strength and hypertrophy.
Abstract: Resistance exercise has been shown to elicit a significant acute hormonal response. It appears that this acute response is more critical to tissue growth and remodelling than chronic changes in resting hormonal concentrations, as many studies have not shown a significant change during resistance training despite increases in muscle strength and hypertrophy. Anabolic hormones such as testosterone and the superfamily of growth hormones (GH) have been shown to be elevated during 15-30 minutes of post-resistance exercise providing an adequate stimulus is present. Protocols high in volume, moderate to high in intensity, using short rest intervals and stressing a large muscle mass, tend to produce the greatest acute hormonal elevations (e.g. testosterone, GH and the catabolic hormone cortisol) compared with low-volume, high-intensity protocols using long rest intervals. Other anabolic hormones such as insulin and insulin-like growth factor-1 (IGF-1) are critical to skeletal muscle growth. Insulin is regulated by blood glucose and amino acid levels. However, circulating IGF-1 elevations have been reported following resistance exercise presumably in response to GH-stimulated hepatic secretion. Recent evidence indicates that muscle isoforms of IGF-1 may play a substantial role in tissue remodelling via up-regulation by mechanical signalling (i.e. increased gene expression resulting from stretch and tension to the muscle cytoskeleton leading to greater protein synthesis rates). Acute elevations in catecholamines are critical to optimal force production and energy liberation during resistance exercise. More recent research has shown the importance of acute hormonal elevations and mechanical stimuli for subsequent up- and down-regulation of cytoplasmic steroid receptors needed to mediate the hormonal effects. Other factors such as nutrition, overtraining, detraining and circadian patterns of hormone secretion are critical to examining the hormonal responses and adaptations to resistance training.

1,197 citations

Journal ArticleDOI
TL;DR: Findings suggest that the use of the situated learning framework provided effective instructional design guidelines for the design of an environment for the acquisition of advanced knowledge.
Abstract: The instructional technology community is in the midst of a philosophical shift from a behaviorist to a constructivist framework, a move that may begin to address the growing rift between formal school learning and real-life learning. One theory of learning that has the capacity to promote authentic learning is that of situated learning.

1,170 citations


Authors

Showing all 4128 results

NameH-indexPapersCitations
Paul Jackson141137293464
William J. Kraemer12375554774
D. Allan Butterfield11550443528
Kerry S. Courneya11260849504
Robert U. Newton10975342527
Roger A. Barker10162039728
Ralph N. Martins9563035394
Wei Wang95354459660
David W. Dunstan9140337901
Peter E.D. Love9054624815
Andrew Jones8369528290
Hongqi Sun8126520354
Leon Flicker7946522669
Mark A. Jenkins7947221100
Josep M. Gasol7731322638
Network Information
Related Institutions (5)
RMIT University
82.9K papers, 1.7M citations

93% related

Monash University
100.6K papers, 3M citations

92% related

University of Queensland
155.7K papers, 5.7M citations

92% related

University of Melbourne
174.8K papers, 6.3M citations

90% related

University of Western Australia
87.4K papers, 3M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202350
2022156
20211,433
20201,372
20191,213
20181,023