scispace - formally typeset
Search or ask a question
Institution

Eli Lilly and Company

CompanyIndianapolis, Indiana, United States
About: Eli Lilly and Company is a company organization based out in Indianapolis, Indiana, United States. It is known for research contribution in the topics: Population & Receptor. The organization has 17826 authors who have published 22835 publications receiving 946714 citations. The organization is also known as: Eli Lily.
Topics: Population, Receptor, Placebo, Insulin, Agonist


Papers
More filters
Journal ArticleDOI
TL;DR: A direct and specific interaction of Rac proteins with phosphatidylinositol (PI) 3-kinase is demonstrated, dependent upon Rac being in a GTP-bound state and requires an intact Rac effector domain.
Abstract: The Rac GTP-binding proteins are members of the Rho family and regulate growth factor-stimulated actin assembly in a variety of cells. The formation of phosphorylated inositol lipids has been implicated in control of the processes initiating and regulating such actin polymerization. Associations of Rho family GTP-binding proteins with enzymes involved in lipid metabolism have been described. Here we demonstrate a direct and specific interaction of Rac proteins with phosphatidylinositol (PI) 3-kinase. This interaction is dependent upon Rac being in a GTP-bound state and requires an intact Rac effector domain. In contrast, direct binding of RhoA to PI 3-kinase could not be detected. Rac-GTP also bound to PI 3-kinase in Swiss 3T3 fibroblast and human neutrophil lysates, and increased PI 3-kinase activity became associated with Rac-GTP in platelet-derived growth factor-stimulated cells. Interaction of Rac-GTP with PI 3-kinase in vitro stimulated the activity of the enzyme by 2-9-fold. A specific interaction of active Rac with PI 3-kinase might be important in regulation of the actin cytoskeleton.

187 citations

Journal ArticleDOI
TL;DR: In patients with type 2 DM and CAD, standard-dose prasugrel is associated with greater platelet inhibition and better response profiles during both the loading and maintenance periods when compared with double-dose clopidogrel.
Abstract: Aims Patients with diabetes mellitus (DM) have increased platelet reactivity and reduced platelet response to clopidogrel compared with patients without DM. Prasugrel, a more potent antiplatelet agent, is associated with greater reductions in ischaemic events compared with clopidogrel, particularly in patients with DM. The aim of this study was to perform serial pharmacodynamic assessments of prasugrel with high-dose clopidogrel in patients with DM. Methods and results Optimizing anti-Platelet Therapy In diabetes MellitUS (OPTIMUS)-3 was a prospective, randomized, double-blind, crossover study in patients with type 2 DM and coronary artery disease (CAD). Patients ( n = 35) were randomly assigned to either prasugrel 60 mg loading dose (LD)/10 mg maintenance dose (MD) or clopidogrel 600 mg LD/150 mg MD over two 1-week treatment periods separated by a 2-week washout period. Platelet function was assessed by Verify Now ® P2Y12 assay, light transmission aggregometry, and vasodilator-stimulated phosphoprotein phosphorylation at 0, 1, 4, and 24 h and 7 days. Greater platelet inhibition by Verify Now ® P2Y12 was achieved by prasugrel compared with clopidogrel at 4 h post-LD (least squares mean, 89.3 vs. 27.7%, P < 0.0001; primary endpoint). The difference in platelet inhibition between prasugrel and clopidogrel was significant from 1 h through 7 days ( P < 0.0001). Similar results were obtained using all other platelet function measures. Prasugrel resulted in fewer poor responders at all time points irrespective of definition used. Conclusion In patients with type 2 DM and CAD, standard-dose prasugrel is associated with greater platelet inhibition and better response profiles during both the loading and maintenance periods when compared with double-dose clopidogrel. Clinical trial identifier: [www.clinicaltrials.gov][1]—[NCT00642174][2] [1]: http://www.clinicaltrials.gov [2]: /lookup/external-ref?link_type=CLINTRIALGOV&access_num=NCT00642174&atom=%2Fehj%2F32%2F7%2F838.atom

187 citations

Journal ArticleDOI
TL;DR: By combining genetic features and socio‐environmental chronic stressful events, the unpredictable, chronic mild stress model in mice can be used to study the etiological and developmental components of major depression, and to identify novel treatments for this condition.
Abstract: Major depression is a complex psychiatric disorder characterized by affective, cognitive, and physiological impairments that lead to maladaptive behavior. The high lifetime prevalence of this disabling condition, coupled with limitations in existing medications, make necessary the development of improved therapeutics. This requires animal models that allow investigation of key biological correlates of the disorder. Described in this unit is the unpredictable chronic mild stress mouse model that is used to screen for antidepressant drug candidates. Originally designed for rats, this model has been adapted for mice to capitalize on the advantages of this species as an experimental model, including inter-strain variability, which permits an exploration of the contribution of genetic background, the ability to create transgenic animals, and lower cost. Thus, by combining genetic features and socio-environmental chronic stressful events, the unpredictable, chronic mild stress model in mice can be used to study the etiological and developmental components of major depression, and to identify novel treatments for this condition.

186 citations

Journal ArticleDOI
TL;DR: Critical elements to consider when designing controlled trials of treatments for treatment-resistant major depressive disorder include the definition of treatment resistance, methods to document previous failed treatment trials, selection of appropriate research populations, measurement of relevant clinical outcomes, tactical issues in delivering the experimental treatment, and trial design choices.

186 citations

Journal ArticleDOI
TL;DR: TGF-β1 mAb added to renin-angiotensin system inhibitors did not slow progression of diabetic nephropathy and the trial was terminated 4 months early for futility on the basis of their recommendation.
Abstract: TGF-β has been implicated as a major pathogenic factor in diabetic nephropathy. This randomized, double-blind, phase 2 study assessed whether modulating TGF-β1 activity with a TGF-β1-specific, humanized, neutralizing monoclonal antibody (TGF-β1 mAb) is safe and more effective than placebo in slowing renal function loss in patients with diabetic nephropathy on chronic stable renin-angiotensin system inhibitor treatment. We randomized 416 patients aged ≥25 years with type 1 or type 2 diabetes, a serum creatinine (SCr) level of 1.3-3.3 mg/dl for women and 1.5-3.5 mg/dl for men (or eGFR of 20-60 ml/min per 1.73 m2), and a 24-hour urine protein-to-creatinine ratio ≥800 mg/g to TGF-β1 mAb (2-, 10-, or 50-mg monthly subcutaneous dosing for 12 months) or placebo. We assessed a change in SCr from baseline to 12 months as the primary efficacy variable. Although the Data Monitoring Committee did not identify safety issues, we terminated the trial 4 months early for futility on the basis of their recommendation. The placebo group had a mean±SD change in SCr from baseline to end of treatment of 0.33±0.67 mg/dl. Least squares mean percentage change in SCr from baseline to end of treatment did not differ between placebo (14%; 95% confidence interval [95% CI], 9.7% to 18.2%) and TGF-β1 mAb treatments (20% [95% CI, 15.3% to 24.3%], 19% [95% CI, 14.2% to 23.0%], and 19% [95% CI, 14.0% to 23.3%] for 2-, 10-, and 50-mg doses, respectively). Thus, TGF-β1 mAb added to renin-angiotensin system inhibitors did not slow progression of diabetic nephropathy.

186 citations


Authors

Showing all 17866 results

NameH-indexPapersCitations
Mark J. Daly204763304452
Irving L. Weissman2011141172504
Eric J. Topol1931373151025
Tony Hunter175593124726
Xiang Zhang1541733117576
Jerrold M. Olefsky14359577356
Stephen F. Badylak13353057083
George A. Bray131896100975
Lloyd Paul Aiello13150685550
Levi A. Garraway12936699989
Mark Sullivan12680263916
James A. Russell124102487929
Tony L. Yaksh12380660898
Elisabetta Dejana12243048254
Hagop S. Akiskal11856550869
Network Information
Related Institutions (5)
Pfizer
37.4K papers, 1.6M citations

98% related

Merck & Co.
48K papers, 1.9M citations

97% related

Novartis
50.5K papers, 1.9M citations

97% related

Hoffmann-La Roche
43K papers, 1.6M citations

93% related

National Institutes of Health
297.8K papers, 21.3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20236
202287
2021815
2020868
2019732
2018742