scispace - formally typeset
Search or ask a question
Institution

Emory University

EducationAtlanta, Georgia, United States
About: Emory University is a education organization based out in Atlanta, Georgia, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 51959 authors who have published 122469 publications receiving 6010698 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: An issue concerning the criteria for tic disorders is highlighted, and how this might affect classification of dyskinesias in psychotic spectrum disorders.
Abstract: Given the recent attention to movement abnormalities in psychosis spectrum disorders (e.g., prodromal/high-risk syndromes, schizophrenia) (Mittal et al., 2008; Pappa and Dazzan, 2009), and an ongoing discussion pertaining to revisions of the Diagnostic and Statistical Manuel of Mental Disorders (DSM) for the upcoming 5th edition, we would like to take this opportunity to highlight an issue concerning the criteria for tic disorders, and how this might affect classification of dyskinesias in psychotic spectrum disorders. Rapid, non-rhythmic, abnormal movements can appear in psychosis spectrum disorders, as well as in a host of commonly co-occurring conditions, including Tourette’s Syndrome and Transient Tic Disorder (Kerbeshian et al., 2009). Confusion can arise when it becomes necessary to determine whether an observed movement (e.g., a sudden head jerk) represents a spontaneous dyskinesia (i.e., spontaneous transient chorea, athetosis, dystonia, ballismus involving muscle groups of the arms, legs, trunk, face, and/or neck) or a tic (i.e., stereotypic or patterned movements defined by the relationship to voluntary movement, acute and chronic time course, and sensory urges). Indeed, dyskinetic movements such as dystonia (i.e., sustained muscle contractions, usually producing twisting and repetitive movements or abnormal postures or positions) closely resemble tics in a patterned appearance, and may only be visually discernable by attending to timing differences (Gilbert, 2006). When turning to the current DSM-IV TR for clarification, the description reads: “Tic Disorders must be distinguished from other types of abnormal movements that may accompany general medical conditions (e.g., Huntington’s disease, stroke, Lesch-Nyhan syndrome, Wilson’s disease, Sydenham’s chorea, multiple sclerosis, postviral encephalitis, head injury) and from abnormal movements that are due to the direct effects of a substance (e.g., a neuroleptic medication)”. However, as it is written, it is unclear if psychosis falls under one such exclusionary medical disorder. The “direct effects of a substance” criteria, referencing neuroleptic medications, further contributes to the uncertainty around this issue. As a result, ruling-out or differentiating tics in psychosis spectrum disorders is at best, a murky endeavor. Historically, the advent of antipsychotic medication in the 1950s has contributed to the confusion about movement signs in psychiatric populations. Because neuroleptic medications produce characteristic movement disorder in some patients (i.e. extrapyramidal side effects), drug-induced movement disturbances have been the focus of research attention in psychotic disorders. However, accumulating data have documented that spontaneous dyskinesias, including choreoathetodic movements, can occur in medication naive adults with schizophrenia spectrum disorders (Pappa and Dazzan, 2009), as well as healthy first-degree relatives of chronically ill schizophrenia patients (McCreadie et al., 2003). Taken together, this suggests that movement abnormalities may reflect pathogenic processes underlying some psychotic disorders (Mittal et al., 2008; Pappa and Dazzan, 2009). More specifically, because spontaneous hyperkinetic movements are believed to reflect abnormal striatal dopamine activity (DeLong and Wichmann, 2007), and dysfunction in this same circuit is also proposed to contribute to psychosis, it is possible that spontaneous dyskinesias serve as an outward manifestation of circuit dysfunction underlying some schizophrenia-spectrum symptoms (Walker, 1994). Further, because these movements precede the clinical onset of psychotic symptoms, sometimes occurring in early childhood (Walker, 1994), and may steadily increase during adolescence among populations at high-risk for schizophrenia (Mittal et al., 2008), observable dyskinesias could reflect a susceptibility that later interacts with environmental and neurodevelopmental factors, in the genesis of psychosis. In adolescents who meet criteria for a prodromal syndrome (i.e., the period preceding formal onset of psychotic disorders characterized by subtle attenuated positive symptoms coupled with a decline in functioning), there is sometimes a history of childhood conditions which are also characterized by suppressible tics or tic like movements (Niendam et al., 2009). On the other hand, differentiating between tics and dyskinesias has also complicated research on childhood disorders such as Tourette syndrome (Kompoliti and Goetz, 1998; Gilbert, 2006). We propose consideration of more explicit and operationalized criteria for differentiating tics and dyskinesias, based on empirically derived understanding of neural mechanisms. Further, revisions of the DSM should allow for the possibility that movement abnormalities might reflect neuropathologic processes underlying the etiology of psychosis for a subgroup of patients. Psychotic disorders might also be included among the medical disorders that are considered a rule-out for tics. Related to this, the reliability of movement assessment needs to be improved, and this may require more training for mental health professionals in movement symptoms. Although standardized assessment of movement and neurological abnormalities is common in research settings, it has been proposed that an examination of neuromotor signs should figure in the assessment of any patient, and be as much a part of the patient assessment as the mental state examination (Picchioni and Dazzan, 2009). To this end it is important for researchers and clinicians to be aware of differentiating characteristics for these two classes of abnormal movement. For example, tics tend to be more complex than myoclonic twitches, and less flowing than choreoathetodic movements (Kompoliti and Goetz, 1998). Patients with tics often describe a sensory premonition or urge to perform a tic, and the ability to postpone tics at the cost of rising inner tension (Gilbert, 2006). For example, one study showed that patients with tic disorders could accurately distinguish tics from other movement abnormalities based on the subjective experience of some voluntary control of tics (Lang, 1991). Another differentiating factor derives from the relationship of the movement in question to other voluntary movements. Tics in one body area rarely occur during purposeful and voluntary movements in that same body area whereas dyskinesia are often exacerbated by voluntary movement (Gilbert, 2006). Finally, it is noteworthy that tics wax and wane in frequency and intensity and migrate in location over time, often becoming more complex and peaking between the ages of 9 and 14 years (Gilbert, 2006). In the case of dyskinesias among youth at-risk for psychosis, there is evidence that the movements tend to increase in severity and frequency as the individual approaches the mean age of conversion to schizophrenia spectrum disorders (Mittal et al., 2008). As revisions to the DSM are currently underway in preparation for the new edition (DSM V), we encourage greater attention to the important, though often subtle, distinctions among subtypes of movement abnormalities and their association with psychiatric syndromes.

67,017 citations

Journal ArticleDOI
TL;DR: Because of the increased complexity of analysis and interpretation of clinical genetic testing described in this report, the ACMG strongly recommends thatclinical molecular genetic testing should be performed in a Clinical Laboratory Improvement Amendments–approved laboratory, with results interpreted by a board-certified clinical molecular geneticist or molecular genetic pathologist or the equivalent.

17,834 citations

Journal ArticleDOI
23 Feb 2016-JAMA
TL;DR: The task force concluded the term severe sepsis was redundant and updated definitions and clinical criteria should replace previous definitions, offer greater consistency for epidemiologic studies and clinical trials, and facilitate earlier recognition and more timely management of patients with sepsi or at risk of developing sepsic shock.
Abstract: Importance Definitions of sepsis and septic shock were last revised in 2001. Considerable advances have since been made into the pathobiology (changes in organ function, morphology, cell biology, biochemistry, immunology, and circulation), management, and epidemiology of sepsis, suggesting the need for reexamination. Objective To evaluate and, as needed, update definitions for sepsis and septic shock. Process A task force (n = 19) with expertise in sepsis pathobiology, clinical trials, and epidemiology was convened by the Society of Critical Care Medicine and the European Society of Intensive Care Medicine. Definitions and clinical criteria were generated through meetings, Delphi processes, analysis of electronic health record databases, and voting, followed by circulation to international professional societies, requesting peer review and endorsement (by 31 societies listed in the Acknowledgment). Key Findings From Evidence Synthesis Limitations of previous definitions included an excessive focus on inflammation, the misleading model that sepsis follows a continuum through severe sepsis to shock, and inadequate specificity and sensitivity of the systemic inflammatory response syndrome (SIRS) criteria. Multiple definitions and terminologies are currently in use for sepsis, septic shock, and organ dysfunction, leading to discrepancies in reported incidence and observed mortality. The task force concluded the term severe sepsis was redundant. Recommendations Sepsis should be defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. For clinical operationalization, organ dysfunction can be represented by an increase in the Sequential [Sepsis-related] Organ Failure Assessment (SOFA) score of 2 points or more, which is associated with an in-hospital mortality greater than 10%. Septic shock should be defined as a subset of sepsis in which particularly profound circulatory, cellular, and metabolic abnormalities are associated with a greater risk of mortality than with sepsis alone. Patients with septic shock can be clinically identified by a vasopressor requirement to maintain a mean arterial pressure of 65 mm Hg or greater and serum lactate level greater than 2 mmol/L (>18 mg/dL) in the absence of hypovolemia. This combination is associated with hospital mortality rates greater than 40%. In out-of-hospital, emergency department, or general hospital ward settings, adult patients with suspected infection can be rapidly identified as being more likely to have poor outcomes typical of sepsis if they have at least 2 of the following clinical criteria that together constitute a new bedside clinical score termed quickSOFA (qSOFA): respiratory rate of 22/min or greater, altered mentation, or systolic blood pressure of 100 mm Hg or less. Conclusions and Relevance These updated definitions and clinical criteria should replace previous definitions, offer greater consistency for epidemiologic studies and clinical trials, and facilitate earlier recognition and more timely management of patients with sepsis or at risk of developing sepsis.

14,699 citations

Journal ArticleDOI
TL;DR: For example, this article found a strong relationship between the breadth of exposure to abuse or household dysfunction during childhood and multiple risk factors for several of the leading causes of death in adults.

12,712 citations

Journal ArticleDOI
Rafael Lozano1, Mohsen Naghavi1, Kyle J Foreman2, Stephen S Lim1  +192 moreInstitutions (95)
TL;DR: The Global Burden of Diseases, Injuries, and Risk Factors Study 2010 aimed to estimate annual deaths for the world and 21 regions between 1980 and 2010 for 235 causes, with uncertainty intervals (UIs), separately by age and sex, using the Cause of Death Ensemble model.

11,809 citations


Authors

Showing all 52622 results

NameH-indexPapersCitations
Han Zhang13097058863
Michael Davis12956661920
David C. Montefiori12992070049
Yang Liu1292506122380
Glenn M. Chertow12876482401
Bernard Roizman12870357218
Garret A. FitzGerald12754760448
Stephen G. Ellis12765565073
John L. Cameron12753662551
Jeremiah Stamler12765570751
Elisabete Weiderpass126982124679
Scott L. Friedman12648862931
Yusuf A. Hannun12658962729
Matthew J. Budoff125144968115
Yuman Fong12586563931
Network Information
Related Institutions (5)
University of California, San Francisco
186.2K papers, 12M citations

98% related

University of North Carolina at Chapel Hill
185.3K papers, 9.9M citations

97% related

Duke University
200.3K papers, 10.7M citations

97% related

University of Pennsylvania
257.6K papers, 14.1M citations

97% related

Yale University
220.6K papers, 12.8M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023195
20221,123
20218,692
20208,001
20197,033
20186,326