scispace - formally typeset
Search or ask a question

Showing papers by "Environmental Molecular Sciences Laboratory published in 2017"


Journal ArticleDOI
15 Dec 2017-Science
TL;DR: This study demonstrates how atomically dispersed ionic platinum (Pt2+) on ceria (CeO2), which is already thermally stable, can be activated via steam treatment to simultaneously achieve the goals of low-temperature carbon monoxide (CO) oxidation activity while providing outstanding hydrothermal stability.
Abstract: To improve fuel efficiency, advanced combustion engines are being designed to minimize the amount of heat wasted in the exhaust. Hence, future generations of catalysts must perform at temperatures that are 100°C lower than current exhaust-treatment catalysts. Achieving low-temperature activity, while surviving the harsh conditions encountered at high engine loads, remains a formidable challenge. In this study, we demonstrate how atomically dispersed ionic platinum (Pt2+) on ceria (CeO2), which is already thermally stable, can be activated via steam treatment (at 750°C) to simultaneously achieve the goals of low-temperature carbon monoxide (CO) oxidation activity while providing outstanding hydrothermal stability. A new type of active site is created on CeO2 in the vicinity of Pt2+, which provides the improved reactivity. These active sites are stable up to 800°C in oxidizing environments.

1,003 citations


Journal ArticleDOI
TL;DR: In this paper, LiPF6 was used as an additive in LiTFSI-LiBOB dual-salt/carbonate-solvent-based electrolytes to enhance the charging capability and cycling stability of Li metal batteries.
Abstract: Batteries using lithium (Li) metal as anodes are considered promising energy storage systems because of their high energy densities. However, safety concerns associated with dendrite growth along with limited cycle life, especially at high charge current densities, hinder their practical uses. Here we report that an optimal amount (0.05 M) of LiPF6 as an additive in LiTFSI–LiBOB dual-salt/carbonate-solvent-based electrolytes significantly enhances the charging capability and cycling stability of Li metal batteries. In a Li metal battery using a 4-V Li-ion cathode at a moderately high loading of 1.75 mAh cm−2, a cyclability of 97.1% capacity retention after 500 cycles along with very limited increase in electrode overpotential is accomplished at a charge/discharge current density up to 1.75 mA cm−2. The fast charging and stable cycling performances are ascribed to the generation of a robust and conductive solid electrolyte interphase at the Li metal surface and stabilization of the Al cathode current collector. Deployment of rechargeable Li metal batteries requires fast charging capability and long-term cycling stability. Here the authors demonstrate the battery application potential of using a small amount of LiPF6 in a dual-salt electrolyte.

955 citations


Journal ArticleDOI
TL;DR: It is found the formation of the intragranular cracks is directly associated with high-voltage cycling, an electrochemically driven and diffusion-controlled process.
Abstract: LiNi1/3Mn1/3Co1/3O2-layered cathode is often fabricated in the form of secondary particles, consisting of densely packed primary particles. This offers advantages for high energy density and alleviation of cathode side reactions/corrosions, but introduces drawbacks such as intergranular cracking. Here, we report unexpected observations on the nucleation and growth of intragranular cracks in a commercial LiNi1/3Mn1/3Co1/3O2 cathode by using advanced scanning transmission electron microscopy. We find the formation of the intragranular cracks is directly associated with high-voltage cycling, an electrochemically driven and diffusion-controlled process. The intragranular cracks are noticed to be characteristically initiated from the grain interior, a consequence of a dislocation-based crack incubation mechanism. This observation is in sharp contrast with general theoretical models, predicting the initiation of intragranular cracks from grain boundaries or particle surfaces. Our study emphasizes that maintaining structural stability is the key step towards high-voltage operation of layered-cathode materials.

597 citations


Journal ArticleDOI
TL;DR: In this article, a review of the recent progress and in depth understandings on the application of LMR cathode materials from a practical point of view is presented, focusing on addressing the fundamental problems of lithium and manganese-rich (LMR) cathodes while keeping practical considerations in mind.
Abstract: The lithium- and manganese-rich (LMR) layered structure cathodes exhibit one of the highest specific energies (≈900 W h kg−1) among all the cathode materials. However, the practical applications of LMR cathodes are still hindered by several significant challenges, including voltage fade, large initial capacity loss, poor rate capability and limited cycle life. Herein, we review the recent progress and in depth understandings on the application of LMR cathode materials from a practical point of view. Several key parameters of LMR cathodes that affect the LMR/graphite full-cell operation are systematically analyzed. These factors include the first-cycle capacity loss, voltage fade, powder tap density, and electrode density. New approaches to minimize the detrimental effects of these factors are highlighted in this work. We also provide perspectives for the future research on LMR cathode materials, focusing on addressing the fundamental problems of LMR cathodes while keeping practical considerations in mind.

359 citations


Journal ArticleDOI
TL;DR: Combined experimental and computational studies suggest that surface phosphorus plays a crucial role in determining the robust catalyst properties of rhodium phosphide electrocatalyst with low metal loading in the form of nanocubes dispersed in high-surface-area carbon (Rh2P/C).
Abstract: The search for active, stable, and cost-efficient electrocatalysts for hydrogen production via water splitting could make a substantial impact on energy technologies that do not rely on fossil fuels. Here we report the synthesis of rhodium phosphide electrocatalyst with low metal loading in the form of nanocubes (NCs) dispersed in high-surface-area carbon (Rh2P/C) by a facile solvo-thermal approach. The Rh2P/C NCs exhibit remarkable performance for hydrogen evolution reaction and oxygen evolution reaction compared to Rh/C and Pt/C catalysts. The atomic structure of the Rh2P NCs was directly observed by annular dark-field scanning transmission electron microscopy, which revealed a phosphorus-rich outermost atomic layer. Combined experimental and computational studies suggest that surface phosphorus plays a crucial role in determining the robust catalyst properties.

309 citations


Journal ArticleDOI
TL;DR: In this article, a low-surface-area, open carbon fiber architecture is used to control the nucleation and growth of the sulfur species by manipulating the carbon surface chemistry and the solvent properties, such as donor number and Li+ diffusivity.
Abstract: High-surface-area, nanostructured carbon is widely used for encapsulating sulfur and improving the cyclic stability of Li–S batteries, but the high carbon content and low packing density limit the specific energy that can be achieved. Here we report an approach that does not rely on sulfur encapsulation. We used a low-surface-area, open carbon fibre architecture to control the nucleation and growth of the sulfur species by manipulating the carbon surface chemistry and the solvent properties, such as donor number and Li+ diffusivity. Our approach facilitates the formation of large open spheres and prevents the production of an undesired insulating sulfur-containing film on the carbon surface. This mechanism leads to ~100% sulfur utilization, almost no capacity fading, over 99% coulombic efficiency and high energy density (1,835 Wh kg−1 and 2,317 Wh l−1). This finding offers an alternative approach for designing high-energy and low-cost Li–S batteries through controlling sulfur reaction on low-surface-area carbon. Sulfur encapsulation with nanoporous carbon is a widely adopted approach for Li–S batteries, but this often results in low sulfur utilization and low volumetric energy density. Here the authors report a non-encapsulation approach for the growth of S-containing species with low-surface-area carbon and high energy.

302 citations


Journal ArticleDOI
TL;DR: Niche partitioning around nitrogen sources may structure the community when organisms directly compete for limited phosphate, and niche complementarity around nitrogen Sources may increase community diversity and productivity in phosphate-limited phototrophic communities.
Abstract: The principles governing acquisition and interspecies exchange of nutrients in microbial communities and how those exchanges impact community productivity are poorly understood. Here, we examine energy and macronutrient acquisition in unicyanobacterial consortia for which species-resolved genome information exists for all members, allowing us to use multi-omic approaches to predict species’ abilities to acquire resources and examine expression of resource-acquisition genes during succession. Metabolic reconstruction indicated that a majority of heterotrophic community members lacked the genes required to directly acquire the inorganic nutrients provided in culture medium, suggesting high metabolic interdependency. The sole primary producer in consortium UCC-O, cyanobacterium Phormidium sp. OSCR, displayed declining expression of energy harvest, carbon fixation, and nitrate and sulfate reduction proteins but sharply increasing phosphate transporter expression over 28 days. Most heterotrophic members likewise exhibited signs of phosphorus starvation during succession. Though similar in their responses to phosphorus limitation, heterotrophs displayed species-specific expression of nitrogen acquisition genes. These results suggest niche partitioning around nitrogen sources may structure the community when organisms directly compete for limited phosphate. Such niche complementarity around nitrogen sources may increase community diversity and productivity in phosphate-limited phototrophic communities.

276 citations


Journal ArticleDOI
TL;DR: Ceria (CeO2) supports are unique in their ability to trap ionic platinum (Pt), providing exceptional stability for isolated single atoms of Pt, and upon oxidation the Pt–Sn clusters readily revert to the atomically dispersed species on CeO2, making Pt– Sn/Ce O2 a fully regenerable catalyst.
Abstract: Ceria (CeO2) supports are unique in their ability to trap ionic platinum (Pt), providing exceptional stability for isolated single atoms of Pt. The reactivity and stability of single-atom Pt species was explored for the industrially important light alkane dehydrogenation reaction. The single-atom Pt/CeO2 catalysts are stable during propane dehydrogenation, but are not selective for propylene. DFT calculations show strong adsorption of the olefin produced, leading to further unwanted reactions. In contrast, when tin (Sn) is added to CeO2, the single-atom Pt catalyst undergoes an activation phase where it transforms into Pt–Sn clusters under reaction conditions. Formation of small Pt–Sn clusters allows the catalyst to achieve high selectivity towards propylene because of facile desorption of the product. The CeO2-supported Pt–Sn clusters are very stable, even during extended reaction at 680 °C. Coke formation is almost completely suppressed by adding water vapor to the feed. Furthermore, upon oxidation the Pt–Sn clusters readily revert to the atomically dispersed species on CeO2, making Pt–Sn/CeO2 a fully regenerable catalyst.

252 citations


Journal ArticleDOI
12 May 2017-Science
TL;DR: A structurally complex, mesoporous uranium-based metal-organic framework (MOF) made from simple starting components that is anchored by oxygen-coordinated uranium cations and has been reported as the lowest-density MOF reported to date.
Abstract: Bottom-up construction of highly intricate structures from simple building blocks remains one of the most difficult challenges in chemistry. We report a structurally complex, mesoporous uranium-based metal-organic framework (MOF) made from simple starting components. The structure comprises 10 uranium nodes and seven tricarboxylate ligands (both crystallographically nonequivalent), resulting in a 173.3-angstrom cubic unit cell enclosing 816 uranium nodes and 816 organic linkers—the largest unit cell found to date for any nonbiological material. The cuboctahedra organize into pentagonal and hexagonal prismatic secondary structures, which then form tetrahedral and diamond quaternary topologies with unprecedented complexity. This packing results in the formation of colossal icosidodecahedral and rectified hexakaidecahedral cavities with internal diameters of 5.0 nanometers and 6.2 nanometers, respectively—ultimately giving rise to the lowest-density MOF reported to date.

249 citations


Journal ArticleDOI
TL;DR: The results highlight that NAC, in particular nitrophenols, are important light absorption contributors of biomass burning organic aerosol (BBOA), suggesting that night time chemistry of •NO3 and N2O5 with particles may play a significant role in atmospheric transformations of BrC.
Abstract: Lag Ba’Omer, a nationwide bonfire festival in Israel, was chosen as a case study to investigate the influence of a major biomass burning event on the light absorption properties of atmospheric brown carbon (BrC). The chemical composition and optical properties of BrC chromophores were investigated using a high performance liquid chromatography (HPLC) platform coupled to photo diode array (PDA) and high resolution mass spectrometry (HRMS) detectors. Substantial increase of BrC light absorption coefficient was observed during the night-long biomass burning event. Most chromophores observed during the event were attributed to nitroaromatic compounds (NAC), comprising 28 elemental formulas of at least 63 structural isomers. The NAC, in combination, accounted for 50–80% of the total visible light absorption (>400 nm) by solvent extractable BrC. The results highlight that NAC, in particular nitrophenols, are important light absorption contributors of biomass burning organic aerosol (BBOA), suggesting that night...

200 citations


Journal ArticleDOI
TL;DR: In this paper, the authors examined water-soluble organic carbon by Fourier transform ion-cyclotron-resonance mass spectrometry to compare the chemical composition and average nominal oxidation state of carbon.
Abstract: Organic matter decomposition in soils and terrestrial sediments has a prominent role in the global carbon cycle. Carbon stocks in anoxic environments, such as wetlands and the subsurface of floodplains, are large and presumed to decompose slowly. The degree of microbial respiration in anoxic environments is typically thought to depend on the energetics of available terminal electron acceptors such as nitrate or sulfate; microbes couple the reduction of these compounds to the oxidation of organic carbon. However, it is also possible that the energetics of the organic carbon itself can determine whether it is decomposed. Here we examined water-soluble organic carbon by Fourier-transform ion-cyclotron-resonance mass spectrometry to compare the chemical composition and average nominal oxidation state of carbon—a metric reflecting whether microbial oxidation of organic matter is thermodynamically favourable—in anoxic (sulfidic) and oxic (non-sulfidic) floodplain sediments. We observed distinct minima in the average nominal oxidation state of water-soluble carbon in sediments exhibiting anoxic, sulfate-reducing conditions, suggesting preservation of carbon compounds with nominal oxidation states below the threshold that makes microbial sulfate reduction thermodynamically favourable. We conclude that thermodynamic limitations constitute an important complement to other mechanisms of carbon preservation, such as enzymatic restrictions and mineral association, within anaerobic environments. Anoxic carbon decomposition is thought to depend on the energetics of electron acceptors. Mass spectrometry measurements of floodplain sediments reveal that the energetics of organic compounds can also determine whether they are decomposed.

Journal ArticleDOI
TL;DR: A comprehensive set of proteins critical to fungal cellulosome assembly is described, including conserved scaffolding proteins unique to the Neocallimastigomycota, suggesting that the fungal Cellulosome is an evolutionarily chimaeric structure that co-opted useful activities from bacterial neighbours within the gut microbiome.
Abstract: Cellulosomes are large, multiprotein complexes that tether plant biomass-degrading enzymes together for improved hydrolysis1. These complexes were first described in anaerobic bacteria, where species-specific dockerin domains mediate the assembly of enzymes onto cohesin motifs interspersed within protein scaffolds1. The versatile protein assembly mechanism conferred by the bacterial cohesin-dockerin interaction is now a standard design principle for synthetic biology2,3. For decades, analogous structures have been reported in anaerobic fungi, which are known to assemble by sequence-divergent non-catalytic dockerin domains (NCDDs)4. However, the components, modular assembly mechanism and functional role of fungal cellulosomes remain unknown5,6. Here, we describe a comprehensive set of proteins critical to fungal cellulosome assembly, including conserved scaffolding proteins unique to the Neocallimastigomycota. High-quality genomes of the anaerobic fungi Anaeromyces robustus, Neocallimastix californiae and Piromyces finnis were assembled with long-read, single-molecule technology. Genomic analysis coupled with proteomic validation revealed an average of 312 NCDD-containing proteins per fungal strain, which were overwhelmingly carbohydrate active enzymes (CAZymes), with 95 large fungal scaffoldins identified across four genera that bind to NCDDs. Fungal dockerin and scaffoldin domains have no similarity to their bacterial counterparts, yet several catalytic domains originated via horizontal gene transfer with gut bacteria. However, the biocatalytic activity of anaerobic fungal cellulosomes is expanded by the inclusion of GH3, GH6 and GH45 enzymes. These findings suggest that the fungal cellulosome is an evolutionarily chimaeric structure-an independently evolved fungal complex that co-opted useful activities from bacterial neighbours within the gut microbiome.

Journal ArticleDOI
TL;DR: The new SLIM SUPER high resolution TWIM platform has broad utility in conjunction with MS and is expected to enable a broad range of previously challenging or intractable separations.
Abstract: Ion mobility (IM) separations have a broad range of analytical applications, but insufficient resolution often limits their utility. Here, we report on ion mobility separations in a structures for lossless ion manipulations (SLIM) serpentine ultralong path with extended routing (SUPER) traveling wave (TW) ion mobility (IM) module in conjunction with mass spectrometry (MS). Ions were confined in the SLIM by rf fields in conjunction with a DC guard bias, enabling essentially lossless TW transmission over greatly extended paths. The extended routing utilized multiple passes (e.g., ∼1094 m over 81 passes through the 13.5 m serpentine path) and was facilitated by the introduction of a lossless ion switch that allowed ions to be directed to either the MS detector or for another pass through the serpentine separation region, allowing theoretically unlimited IM path lengths. The multipass SUPER IM-MS provided resolution approximately proportional to the square root of the number of passes (or total path length). ...

Journal ArticleDOI
TL;DR: The corrosion behavior of aluminum current collectors was revisited using a home-build high-precision electrochemical measurement system, and the impact of electrolyte components and the surface protection layer on aluminum foil was systematically studied.
Abstract: The corrosion of aluminum current collectors and the oxidation of solvents at a relatively high potential have been widely investigated with an aim to stabilize the electrochemical performance of lithium-ion batteries using such components. The corrosion behavior of aluminum current collectors was revisited using a home-build high-precision electrochemical measurement system, and the impact of electrolyte components and the surface protection layer on aluminum foil was systematically studied. The electrochemical results showed that the corrosion of aluminum foil was triggered by the electrochemical oxidation of solvent molecules, like ethylene carbonate, at a relative high potential. The organic radical cations generated from the electrochemical oxidation are energetically unstable and readily undergo a deprotonation reaction that generates protons and promotes the dissolution of Al3+ from the aluminum foil. This new reaction mechanism can also shed light on the dissolution of transitional metal at high p...

Journal ArticleDOI
TL;DR: The findings show that the way the released O2 is accommodated is linked to lithium-ion diffusion and electron-transport paths across both spatial and temporal scales; in turn, this interplay governs the morphology of the discharging/charging products in Li-O2 cells.
Abstract: Sodium–oxygen (Na–O2) batteries are being extensively studied because of their higher energy efficiency compared to that of lithium oxygen (Li–O2) batteries. The critical challenges in the development of Na–O2 batteries include the elucidation of the reaction mechanism, reaction products, and the structural and chemical evolution of the reaction products and their correlation with battery performance. For the first time, in situ transmission electron microscopy was employed to probe the reaction mechanism and structural evolution of the discharge products in Na–O2 batteries. The discharge product was featured by the formation of both cubic and conformal NaO2. It was noticed that the impingement of the reaction product (NaO2) led to particle coarsening through coalescence. We investigated the stability of the discharge product and observed that the reaction product NaO2 was stable in the case of the solid electrolyte. The present work provides unprecedented insight into the development of Na–O2 batteries.

Journal ArticleDOI
TL;DR: This work highlights that Ni ions, though acting as the dominant redox species in many LTMO, are labile to migrate to cause lattice disordering upon battery cycling, while the Mn ions are more stable as compared with Ni and Co and can act as pillar to stabilize layered structure.
Abstract: Layered lithium transition metal oxides (LTMO) are promising candidate cathode materials for next-generation high-energy density lithium ion battery. The challenge for using this category of cathode is the capacity and voltage fading, which is believed to be associated with the layered structure disordering, a process that is initiated from the surface or solid-electrolyte interface and facilitated by transition metal (TM) reduction and oxygen vacancy formation. However, the atomic level dynamic mechanism of such a layered structure disordering is still not fully clear. In this work, utilizing atomic resolution electron energy loss spectroscopy (EELS), we map, for the first time at atomic scale, the spatial evolution of Ni, Co and Mn in a cycled LiNi1/3Mn1/3Co1/3O2 layered cathode. In combination with atomic level structural imaging, we discovered the direct correlation of TM ions migration behavior with lattice disordering, featuring the residing of TM ions in the tetrahedral site and a sequential migrat...

Journal ArticleDOI
TL;DR: In this paper, a multifunctional separator through coating a thin electronic conductive film on one side of the conventional polymer separator facing the Li anode is proposed for the purpose of Li dendrite suppression and cycling stability improvement.
Abstract: Lithium (Li) metal is one of the most promising candidates for the anode in high-energy-density batteries. However, Li dendrite growth induces a significant safety concerns in these batteries. Here, a multifunctional separator through coating a thin electronic conductive film on one side of the conventional polymer separator facing the Li anode is proposed for the purpose of Li dendrite suppression and cycling stability improvement. The ultrathin Cu film on one side of the polyethylene support serves as an additional conducting agent to facilitate electrochemical stripping/deposition of Li metal with less accumulation of electrically isolated or “dead” Li. Furthermore, its electrically conductive nature guides the backside plating of Li metal and modulates the Li deposition morphology via dendrite merging. In addition, metallic Cu film coating can also improve thermal stability of the separator and enhance the safety of the batteries. Due to its unique beneficial features, this separator enables stable cycling of Li metal anode with enhanced Coulombic efficiency during extended cycles in Li metal batteries and increases the lifetime of Li metal anode by preventing short-circuit failures even under extensive Li metal deposition.

Journal ArticleDOI
TL;DR: In this paper, a carbon encapsulating transition metal nanoparticles are used for the oxygen evolution reaction (OER) in a bimetallic metal-organic frameworks (MOFs) precursors.

Journal ArticleDOI
TL;DR: To ensure the degradation of lignin and growth of strain L1, multiple aspects of cells metabolism including transporter, environmental response factors, and protein synthesis were enhanced.
Abstract: Lignin is the most abundant aromatic biopolymer in the biosphere and it comprises up to 30% of plant biomass. Although lignin is the most recalcitrant component of the plant cell wall, still there are microorganisms able to decompose it or degrade it. Fungi are recognized as the most widely used microbes for lignin degradation. However, bacteria have also been known to be able to utilize lignin as a carbon or energy source. Bacillus ligniniphilus L1 was selected in this study due to its capability to utilize alkaline lignin as a single carbon or energy source and its excellent ability to survive in extreme environments. To investigate the aromatic metabolites of strain L1 decomposing alkaline lignin, GC–MS analysis was performed and fifteen single phenol ring aromatic compounds were identified. The dominant absorption peak included phenylacetic acid, 4-hydroxy-benzoicacid, and vanillic acid with the highest proportion of metabolites resulting in 42%. Comparison proteomic analysis was carried out for further study showed that approximately 1447 kinds of proteins were produced, 141 of which were at least twofold up-regulated with alkaline lignin as the single carbon source. The up-regulated proteins contents different categories in the biological functions of protein including lignin degradation, ABC transport system, environmental response factors, protein synthesis, assembly, etc. GC–MS analysis showed that alkaline lignin degradation of strain L1 produced 15 kinds of aromatic compounds. Comparison proteomic data and metabolic analysis showed that to ensure the degradation of lignin and growth of strain L1, multiple aspects of cells metabolism including transporter, environmental response factors, and protein synthesis were enhanced. Based on genome and proteomic analysis, at least four kinds of lignin degradation pathway might be present in strain L1, including a Gentisate pathway, the benzoic acid pathway and the β-ketoadipate pathway. The study provides an important basis for lignin degradation by bacteria.

Journal ArticleDOI
TL;DR: Informed-Proteomics is presented, an open-source software suite for top-down proteomics analysis that consists of an LC-MS feature-finding algorithm, a database search algorithm, and an interactive results viewer that is compared with several other popular tools using human-in-mouse xenograft luminal and basal breast tumor samples.
Abstract: Top-down proteomics, the analysis of intact proteins in their endogenous form, preserves valuable information about post-translation modifications, isoforms and proteolytic processing. The quality of top-down liquid chromatography-tandem MS (LC-MS/MS) data sets is rapidly increasing on account of advances in instrumentation and sample-processing protocols. However, top-down mass spectra are substantially more complex than conventional bottom-up data. New algorithms and software tools for confident proteoform identification and quantification are needed. Here we present Informed-Proteomics, an open-source software suite for top-down proteomics analysis that consists of an LC-MS feature-finding algorithm, a database search algorithm, and an interactive results viewer. We compare our tool with several other popular tools using human-in-mouse xenograft luminal and basal breast tumor samples that are known to have significant differences in protein abundance based on bottom-up analysis.

Journal ArticleDOI
TL;DR: Ru-Cu/HY showed the best HDO performance, affording the highest selectivity to hydrocarbon products, and all bifunctional catalysts proved to be superior over the combination catalysts of Ru/Al2 O3 and HY zeolite.
Abstract: The synthesis of high-efficiency and low-cost catalysts for hydrodeoxygenation (HDO) of waste lignin to advanced biofuels is crucial for enhancing current biorefinery processes. Inexpensive transition metals, including Fe, Ni, Cu, and Zn, were severally co-loaded with Ru on HY zeolite to form bimetallic and bifunctional catalysts. These catalysts were subsequently tested for HDO conversion of softwood lignin and several lignin model compounds. Results indicated that the inexpensive earth-abundant metals could modulate the hydrogenolysis activity of Ru and decrease the yield of low-molecular-weight gaseous products. Among these catalysts, Ru-Cu/HY showed the best HDO performance, affording the highest selectivity to hydrocarbon products. The improved catalytic performance of Ru-Cu/HY was probably a result of the following three factors: (1) high total and strong acid sites, (2) good dispersion of metal species and limited segregation, and (3) high adsorption capacity for polar fractions, including hydroxyl groups and ether bonds. Moreover, all bifunctional catalysts proved to be superior over the combination catalysts of Ru/Al2 O3 and HY zeolite.

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate that a one-pot integrated biofuel production is enabled by a low cost (∼$1 per kg) and biocompatible protic IL (PIL), ethanolamine acetate, without pH adjustments, water-wash and solid-liquid separations.

Journal ArticleDOI
TL;DR: This work constructs moisture-stable Ni-MOF-74 members with adjustable pore apertures, which exhibit excellent sorption capabilities toward water and fluorocarbon R134a in MOFs, to be the first report of adsorption isotherms of fluorOCarbon R 134a inMOFs.
Abstract: Metal–organic frameworks (MOFs) have shown promising behavior for adsorption cooling applications. Using organic ligands with 1, 2, and 3 phenylene rings, we construct moisture-stable Ni-MOF-74 members with adjustable pore apertures, which exhibit excellent sorption capabilities toward water and fluorocarbon R134a. To our knowledge, this is the first report of adsorption isotherms of fluorocarbon R134a in MOFs. The adsorption patterns for these materials differ significantly and are attributed to variances in their hydrophobic/hydrophilic pore character associated with differences in pore size.

Journal ArticleDOI
TL;DR: It was showed that OM composition depends primarily on soil and sediment characteristics, and two sequential extraction protocols, progressing from polar to non-polar solvents, were found to provide the highest number and diversity of organic compounds extracted from the soil and sediments.

Journal ArticleDOI
TL;DR: This study provided a unified modeling method for the kinetics of ion adsorption/desorption on ferrihydrite and quantitatively elucidated how the equilibrium properties of the cation and oxyanion binding to various ferriHydrite sites and the formation of various surface complexes controlled the adsor adaptation and desorption kinetics at different reaction conditions and time scales.
Abstract: Quantitative understanding the kinetics of toxic ion reactions with various heterogeneous ferrihydrite binding sites is crucial for accurately predicting the dynamic behavior of contaminants in environment. In this study, kinetics of As(V), Cr(VI), Cu(II), and Pb(II) adsorption and desorption on ferrihydrite was studied using a stirred-flow method, which showed that metal adsorption/desorption kinetics was highly dependent on the reaction conditions and varied significantly among four metals. High resolution scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy showed that all four metals were distributed within the ferrihydrite aggregates homogeneously after adsorption reactions. Based on the equilibrium model CD-MUSIC, we developed a novel unified kinetics model applicable for both cation and oxyanion adsorption and desorption on ferrihydrite, which is able to account for the heterogeneity of ferrihydrite binding sites, different binding properties of cations and oxyanions, and variations of solution chemistry. The model described the kinetic results well. We quantitatively elucidated how the equilibrium properties of the cation and oxyanion binding to various ferrihydrite sites and the formation of various surface complexes controlled the adsorption and desorption kinetics at different reaction conditions and time scales. Our study provided a unified modeling method for the kinetics of ion adsorption/desorption on ferrihydrite.

Journal ArticleDOI
TL;DR: Roux-en-Y gastric bypass resulted in greater alteration of the gut microbiome and metabolome than LAGB, and RYGB group exhibited unique microbiome composed of many amino-acid fermenters, compared with nonsurgical controls.
Abstract: Roux-en-Y gastric bypass (RYGB) and laparoscopic adjustable gastric banding (LAGB) are anatomically different bariatric operations. RYGB achieves greater weight loss compared with LAGB. Changes in the gut microbiome have been documented after RYGB, but not LAGB, and the microbial contribution to sustainable surgical weight loss warrants further evaluation. We hypothesized that RYGB imposes greater changes on the microbiota and its metabolism than LAGB, and that the altered microbiota may contribute to greater weight loss. Using multi-omic approaches, we analyzed fecal microbial community structure and metabolites of pre-bariatric surgery morbidly obese (PreB-Ob), normal weight (NW), post-RYGB, and post-LAGB participants. RYGB microbiomes were significantly different from those from NW, LAGB and PreB-Ob. Microbiome differences between RYGB and PreB-Ob populations were mirrored in their metabolomes. Diversity was higher in RYGB compared with LAGB, possibly because of an increase in the abundance of facultative anaerobic, bile-tolerant and acid-sensible microorganisms in the former. Possibly because of lower gastric acid exposure, phylotypes from the oral cavity, such as Escherichia, Veillonella and Streptococcus, were in greater abundance in the RYGB group, and their abundances positively correlated with percent excess weight loss. Many of these post-RYGB microorganisms are capable of amino-acid fermentation. Amino-acid and carbohydrate fermentation products—isovalerate, isobutyrate, butyrate and propionate—were prevalent in RYGB participants, but not in LAGB participants. RYGB resulted in greater alteration of the gut microbiome and metabolome than LAGB, and RYGB group exhibited unique microbiome composed of many amino-acid fermenters, compared with nonsurgical controls.

Journal ArticleDOI
TL;DR: It is shown that photoautotrophy in the green sulfur bacterium Prosthecochloris aestaurii can be driven by either electrons from a solid electrode or acetate oxidation via direct interspecies electron transfer from a heterotrophic partner bacterium, Geobacter sulfurreducens.
Abstract: Microbial phototrophs, key primary producers on Earth, use H2O, H2, H2S and other reduced inorganic compounds as electron donors. Here we describe a form of metabolism linking anoxygenic photosynthesis to anaerobic respiration that we call 'syntrophic anaerobic photosynthesis'. We show that photoautotrophy in the green sulfur bacterium Prosthecochloris aestaurii can be driven by either electrons from a solid electrode or acetate oxidation via direct interspecies electron transfer from a heterotrophic partner bacterium, Geobacter sulfurreducens. Photosynthetic growth of P. aestuarii using reductant provided by either an electrode or syntrophy is robust and light-dependent. In contrast, P. aestuarii does not grow in co-culture with a G. sulfurreducens mutant lacking a trans-outer membrane porin-cytochrome protein complex required for direct intercellular electron transfer. Syntrophic anaerobic photosynthesis is therefore a carbon cycling process that could take place in anoxic environments. This process could be exploited for biotechnological applications, such as waste treatment and bioenergy production, using engineered phototrophic microbial communities.

Journal ArticleDOI
TL;DR: In this paper, a sub-micron Cu/SSZ-13, obtained by modifying an existing synthesis procedure, was shown to be an effective and stable catalyst for selective catalytic reduction of NO.
Abstract: For the first time, sub-micron Cu/SSZ-13, obtained by modifying an existing synthesis procedure, was shown to be an effective and stable catalyst for selective catalytic reduction of NO. Characterization of the materials with X-ray diffraction, N2-physisorption and 27Al MAS NMR shows that hydrothermal aging, which simulates SCR reaction conditions, is more destructive for smaller particles in a sodium form. After Cu exchange, however, the catalytic performance and hydrothermal stability for Cu/SSZ-13 is independent of the particle size. In particular, a clear positive correlation is found between remaining tetrahedral framework Al and isolated Cu-ion concentrations in aged Cu/SSZ-13 catalysts of comparable Al and Cu contents. This indicates that (1) isolated Cu-ion and paired framework Al configurations display remarkable hydrothermal stabilities; and (2) paired-Al contents can be varied via modifying the synthesis procedures, which appear to have a more critical influence on stabilizing isolated Cu-ions during harsh hydrothermal aging than the particle size. This study is of high interest for applications in vehicular DeNOx technologies where high loadings of active species on wash coats can be achieved by using sub-micron Cu/SSZ-13.

Journal ArticleDOI
TL;DR: In this article, the authors used a recently developed approach to retrieve the time and spectral-dependent optical properties of ambient biomass-burning aerosols from 300 to 650nm wavelengths during a regional nighttime bonfire festival in Israel.
Abstract: The radiative effects of biomass-burning aerosols on regional and global scales can be substantial. Accurate modeling of the radiative effects of smoke aerosols requires wavelength-dependent measurements and parameterizations of their optical properties in the UV and visible spectral ranges along with improved description of their chemical composition. To address this issue, we used a recently developed approach to retrieve the time- and spectral-dependent optical properties of ambient biomass-burning aerosols from 300 to 650 nm wavelengths during a regional nighttime bonfire festival in Israel. During the biomass burning event, the overall absorption at 400 nm increased by about 2 orders of magnitude, changing the single scattering albedo from a background level of 0.95 to 0.7. Based on the new retrieval method, we provide parameterizations of the wavelength-dependent effective complex refractive index from 350 to 650 nm for freshly emitted and slightly aged biomass-burning aerosols. In addition, PM2.5 filter samples were collected for detailed offline chemical analysis of the water-soluble organics that contribute to light absorption. Nitroaromatics were identified as major organic species responsible for the increased absorption at 400 to 500 nm. Typical chromophores include 4-nitrocatechol, 4-nitrophenol, nitrosyringol, and nitroguaiacol; oxidation-nitration products of methoxyphenols; and known products of lignin pyrolysis. Our findings emphasize the importance of both primary and secondary organic aerosols from biomass burning in absorption of solar radiation and in effective radiative forcing.

Journal ArticleDOI
TL;DR: These measurements show a much shorter Na-O distance than generally reported in the experimental literature (Na-Oavg ∼ 2.44 Å) although the current measurements are in agreement with recent neutron diffraction measurements.
Abstract: A combination of theory, X-ray diffraction (XRD) and extended x-ray absorption fine structure (EXAFS) are used to probe the hydration structure of aqueous Na+. The high spatial resolution of the XRD measurements corresponds to Qmax = 24 A−1 while the first-reported Na K-edge EXAFS measurements have a spatial resolution corresponding to 2k = Qmax = 16 A−1. Both provide an accurate measure of the shape and position of the first peak in the Na–O pair distribution function, gNaO(r). The measured Na–O distances of 2.384 ± 0.003 A (XRD) and 2.37 ± 0.024 A (EXAFS) are in excellent agreement. These measurements show a much shorter Na–O distance than generally reported in the experimental literature (Na–Oavg ∼ 2.44 A) although the current measurements are in agreement with recent neutron diffraction measurements. The measured Na–O coordination number from XRD is 5.5 ± 0.3. The measured structure is compared with both classical and first-principles density functional theory (DFT) simulations. Both of the DFT-based ...