scispace - formally typeset
Search or ask a question

Showing papers by "European Southern Observatory published in 2013"


Journal ArticleDOI
TL;DR: Astropy as discussed by the authors is a Python package for astronomy-related functionality, including support for domain-specific file formats such as flexible image transport system (FITS) files, Virtual Observatory (VO) tables, common ASCII table formats, unit and physical quantity conversions, physical constants specific to astronomy, celestial coordinate and time transformations, world coordinate system (WCS) support, generalized containers for representing gridded as well as tabular data, and a framework for cosmological transformations and conversions.
Abstract: We present the first public version (v02) of the open-source and community-developed Python package, Astropy This package provides core astronomy-related functionality to the community, including support for domain-specific file formats such as flexible image transport system (FITS) files, Virtual Observatory (VO) tables, and common ASCII table formats, unit and physical quantity conversions, physical constants specific to astronomy, celestial coordinate and time transformations, world coordinate system (WCS) support, generalized containers for representing gridded as well as tabular data, and a framework for cosmological transformations and conversions Significant functionality is under activedevelopment, such as a model fitting framework, VO client and server tools, and aperture and point spread function (PSF) photometry tools The core development team is actively making additions and enhancements to the current code base, and we encourage anyone interested to participate in the development of future Astropy versions

9,720 citations


Journal ArticleDOI
TL;DR: Astropy as mentioned in this paper provides core astronomy-related functionality to the community, including support for domain-specific file formats such as Flexible Image Transport System (FITS) files, Virtual Observatory (VO) tables, and common ASCII table formats, unit and physical quantity conversions, physical constants specific to astronomy, celestial coordinate and time transformations, world coordinate system (WCS) support, generalized containers for representing gridded as well as tabular data, and a framework for cosmological transformations and conversions.
Abstract: We present the first public version (v0.2) of the open-source and community-developed Python package, Astropy. This package provides core astronomy-related functionality to the community, including support for domain-specific file formats such as Flexible Image Transport System (FITS) files, Virtual Observatory (VO) tables, and common ASCII table formats, unit and physical quantity conversions, physical constants specific to astronomy, celestial coordinate and time transformations, world coordinate system (WCS) support, generalized containers for representing gridded as well as tabular data, and a framework for cosmological transformations and conversions. Significant functionality is under active development, such as a model fitting framework, VO client and server tools, and aperture and point spread function (PSF) photometry tools. The core development team is actively making additions and enhancements to the current code base, and we encourage anyone interested to participate in the development of future Astropy versions.

1,944 citations


Journal ArticleDOI
TL;DR: In this paper, the stellar mass functions (SMFs) of star-forming and quiescent galaxies were measured to z = 4 using a sample of 95,675 K$_s$ -selected galaxies in the COSMOS/UltraVISTA field.
Abstract: We present measurements of the stellar mass functions (SMFs) of star-forming and quiescent galaxies to z = 4 using a sample of 95,675 K$_s$ -selected galaxies in the COSMOS/UltraVISTA field. The SMFs of the combined population are in good agreement with previous measurements and show that the stellar mass density of the universe was only 50%, 10%, and 1% of its current value at z ~{} 0.75, 2.0, and 3.5, respectively. The quiescent population drives most of the overall growth, with the stellar mass density of these galaxies increasing as {$ρ$}$_{star}$vprop(1 + z)$^{–4.7 ± 0.4}$ since z = 3.5, whereas the mass density of star-forming galaxies increases as {$ρ$}$_{star}$vprop(1 + z)$^{–2.3 ± 0.2}$. At z {gt} 2.5, star-forming galaxies dominate the total SMF at all stellar masses, although a non-zero population of quiescent galaxies persists to z = 4. Comparisons of the K$_s$ -selected star-forming galaxy SMFs with UV-selected SMFs at 2.5 {lt} z {lt} 4 show reasonable agreement and suggest that UV-selected samples are representative of the majority of the stellar mass density at z {gt} 3.5. We estimate the average mass growth of individual galaxies by selecting galaxies at fixed cumulative number density. The average galaxy with log(M $_{star}$/M $_{☉}$) = 11.5 at z = 0.3 has grown in mass by only 0.2 dex (0.3 dex) since z = 2.0 (3.5), whereas those with log(M $_{star}$/M $_{☉}$) = 10.5 have grown by {gt}1.0 dex since z = 2. At z {lt} 2, the time derivatives of the mass growth are always larger for lower-mass galaxies, which demonstrates that the mass growth in galaxies since that redshift is mass-dependent and primarily bottom-up. Lastly, we examine potential sources of systematic uncertainties in the SMFs and find that those from photo-z templates, stellar population synthesis modeling, and the definition of quiescent galaxies dominate the total error budget in the SMFs. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under ESO programme ID 179.A-2005 and on data products produced by TERAPIX and the Cambridge Astronomy Survey Unit on behalf of the UltraVISTA consortium.

804 citations


Journal ArticleDOI
TL;DR: Cappellari et al. as mentioned in this paper constructed detailed axisymmetric dynamical models (Jeans Anisotropic MGE), which allow for orbital anisotropy, include a dark matter halo and reproduce in detail both the galaxy images and the high-quality integral-field stellar kinematics out to about 1R(e), the projected half-light radius.
Abstract: We study the volume-limited and nearly mass-selected (stellar mass M-stars greater than or similar to 6 x 10(9) M circle dot) ATLAS(3D) sample of 260 early-type galaxies (ETGs, ellipticals Es and lenticulars S0s). We construct detailed axisymmetric dynamical models (Jeans Anisotropic MGE), which allow for orbital anisotropy, include a dark matter halo and reproduce in detail both the galaxy images and the high-quality integral-field stellar kinematics out to about 1R(e), the projected half-light radius. We derive accurate total mass-to-light ratios (M/L)(e) and dark matter fractions f(DM), within a sphere of radius centred on the galaxies. We also measure the stellar (M/L)(stars) and derive a median dark matter fraction f(DM) = 13 per cent in our sample. We infer masses M-JAM equivalent to L x (M/L)(e) approximate to 2 x M-1/2, where M-1/2 is the total mass within a sphere enclosing half of the galaxy light. We find that the thin two-dimensional subset spanned by galaxies in the (M-JAM, sigma(e), R-e(maj)) coordinates system, which we call the Mass Plane (MP) has an observed rms scatter of 19 per cent, which implies an intrinsic one of 11 per cent. Here, is the major axis of an isophote enclosing half of the observed galaxy light, while Sigma(e) is measured within that isophote. The MP satisfies the scalar virial relation M-JAM proportional to sigma R-2(e)e(maj) within our tight errors. This show that the larger scatter in the Fundamental Plane (FP) (L, Sigma(e), R-e) is due to stellar population effects [including trends in the stellar initial mass function (IMF)]. It confirms that the FP deviation from the virial exponents is due to a genuine (M/L)(e) variation. However, the details of how both R-e and Sigma(e) are determined are critical in defining the precise deviation from the virial exponents. The main uncertainty in masses or M/L estimates using the scalar virial relation is in the measurement of R-e. This problem is already relevant for nearby galaxies and may cause significant biases in virial mass and size determinations at high redshift. Dynamical models can eliminate these problems. We revisit the (M/L)(e)-Sigma(e) relation, which describes most of the deviations between the MP and the FP. The best-fitting relation is (M/L)(e) sigma(0.72)(e) (r band). It provides an upper limit to any systematic increase of the IMF mass normalization with Sigma(e). The correlation is more shallow and has smaller scatter for slow rotating systems or for galaxies in Virgo. For the latter, when using the best distance estimates, we observe a scatter in (M/L)(e) of 11 per cent, and infer an intrinsic one of 8 per cent. We perform an accurate empirical study of the link between Sigma(e) and the galaxies circular velocity V-circ within 1R(e) (where stars dominate) and find the relation max (V-circ) approximate to 1.76 x Sigma(e), which has an observed scatter of 7 per cent. The accurate parameters described in this paper are used in the companion Paper XX (Cappellari et al.) of this series to explore the variation of global galaxy properties, including the IMF, on the projections of the MP.

629 citations


Journal ArticleDOI
TL;DR: In this article, the authors derived accurate total mass-to-light ratios (M/L) approximate to (m/L)(r = R-e) within a sphere of radius r = r-e centred on the galaxy, as well as stellar (M /L)(stars) (with the dark matter removed) for the volume-limited and nearly mass-selected (stellar mass M-star greater than or similar to 6 x 10(9) M-circle dot) ATLAS(3D) sample of 260 early-type galaxies (ETGs
Abstract: In the companion Paper XV of this series, we derive accurate total mass-to-light ratios (M/L)(JAM) approximate to (M/L)(r = R-e) within a sphere of radius r = R-e centred on the galaxy, as well as stellar (M/L)(stars) (with the dark matter removed) for the volume-limited and nearly mass-selected (stellar mass M-star greater than or similar to 6 x 10(9) M-circle dot) ATLAS(3D) sample of 260 early-type galaxies (ETGs, ellipticals Es and lenticulars S0s). Here, we use those parameters to study the two orthogonal projections (M-JAM, sigma(e)) and (M-JAM, R-e(maj)) of the thin Mass Plane (MP) (M-JAM, sigma(e), R-e(maj)) which describes the distribution of the galaxy population, where M-JAM = L x (M/L)(JAM) approximate to M-star. The distribution of galaxy properties on both projections of the MP is characterized by: (i) the same zone of exclusion (ZOE), which can be transformed from one projection to the other using the scalar virial equation. The ZOE is roughly described by two power laws, joined by a break at a characteristic mass M-JAM approximate to 3 x 10(10) M-circle dot, which corresponds to the minimum R-e and maximum stellar density. This results in a break in the mean M-JAM-sigma(e) relation with trends M-JAM proportional to sigma(2.3)(e) and M-JAM proportional to sigma(4.7)(e) at small and large sigma(e), respectively; (ii) a characteristic mass M-JAM approximate to 2 x 10(11) M-circle dot which separates a population dominated by flat fast rotator with discs and spiral galaxies at lower masses, from one dominated by quite round slow rotators at larger masses; (iii) below that mass the distribution of ETGs' properties on the two projections of the MP tends to be constant along lines of roughly constant sigma(e), or equivalently along lines with R-e(maj) proportional to M-JAM, respectively (or even better parallel to the ZOE: R-maj(e) proportional to M-JAM(0.75)); (iv) it forms a continuous and parallel sequence with the distribution of spiral galaxies; (v) at even lower masses, the distribution of fast-rotator ETGs and late spirals naturally extends to that of dwarf ETGs (Sph) and dwarf irregulars (Im), respectively. We use dynamical models to analyse our kinematic maps. We show that Sigma(e) traces the bulge fraction, which appears to be the main driver for the observed trends in the dynamical (M/L)(JAM) and in indicators of the (M/L)(pop) of the stellar population like H beta and colour, as well as in the molecular gas fraction. A similar variation along contours of Sigma(e) is also observed for the mass normalization of the stellar initial mass function (IMF), which was recently shown to vary systematically within the ETGs' population. Our preferred relation has the form log(10)[(M/L)(stars)/(M/L)(Salp)] = a + b x log(10)(sigma(e)/130 km s(-1)) with a = -0.12 +/- 0.01 and b = 0.35 +/- 0.06. Unless there are major flaws in all stellar population models, this trend implies a transition of the mean IMF from Kroupa to Salpeter in the interval log(10)(sigma(e)/km s(-1)) approximate to 1.9-2.5 (or sigma e approximate to 90-290 km s-1), with a smooth variation in between, consistently with what was shown in Cappellari et al. The observed d205 (or sigma e istribution of galaxy properties on the MP provides a clean and novel view for a number of previously reported trends, which constitute special two-dimensional projections of the more general four-dimensional parameters trends on the MP. We interpret it as due to a combination of two main effects: (i) an increase of the bulge fraction, which increases Sigma(e), decreases R-e, and greatly enhance the likelihood for a galaxy to have its star formation quenched, and (ii) dry merging, increasing galaxy mass and R-e by moving galaxies along lines of roughly constant Sigma(e) (or steeper), while leaving the population nearly unchanged.

616 citations


Journal ArticleDOI
TL;DR: In this article, the stellar mass functions (SMFs) of star-forming and quiescent galaxies to z = 4 were measured using a sample of 95 675 galaxies in the COSMOS/UltraVISTA field.
Abstract: We present measurements of the stellar mass functions (SMFs) of star-forming and quiescent galaxies to z = 4 using a sample of 95 675 galaxies in the COSMOS/UltraVISTA field. Sources have been selected from the DR1 UltraVISTA K_{s}-band imaging which covers a unique combination of a wide area (1.62 deg^2), to a significant depth (K_{s,tot} = 23.4). The SMFs of the combined population are in good agreement with previous measurements and show that the stellar mass density of the universe was only 50%, 10% and 1% of its current value at z ~ 0.75, 2.0, and 3.5, respectively. The quiescent population drives most of the overall growth, with the stellar mass density of these galaxies increasing by 2.71^{+0.93}_{-0.22} dex since z = 3.5. At z > 2.5, star-forming galaxies dominate the total SMF at all stellar masses, although a nonzero population of quiescent galaxies persists to z = 4. Comparisons of the K_{s}-selected star-forming galaxy SMFs to UV-selected SMFs at 2.5 3.5. We estimate the average mass growth of individual galaxies by selecting galaxies at fixed cumulative number density. The average galaxy with Log(M_{*}/M_{sun}) = 11.5 at z = 0.3 has grown in mass by only 0.2 dex (0.3 dex) since z = 2.0(3.5), whereas those with Log(M_{*}/M_{sun}) = 10.5 have grown by > 1.0 dex since z = 2. At z < 2, the time derivatives of the mass growth are always larger for lower-mass galaxies, which demonstrates that the mass growth in galaxies since that redshift is mass-dependent and primarily bottom-up. Lastly, we examine potential sources of systematic uncertainties on the SMFs and find that those from photo-z templates, SPS modeling, and the definition of quiescent galaxies dominate the total error budget in the SMFs.

584 citations


Journal ArticleDOI
TL;DR: Reflex as discussed by the authors is an environment to automate data reduction workflows for astronomical data processing, which includes a rule-based data organiser, infrastructure to re-use results, thorough book-keeping, data progeny tracking, interactive user interfaces, and a novel concept to exploit information created during data organisation for the workflow execution.
Abstract: Context. Data from complex modern astronomical instruments often consist of a large number of di erent science and calibration files, and their reduction requires a variety of software tools. The execution chain of the tools represents a complex workflow that needs to be tuned and supervised, often by individual researchers that are not necessarily experts for any specific instrument. Aims. The e ciency of data reduction can be improved by using automatic workflows to organise data and execute a sequence of data reduction steps. To realize such e ciency gains, we designed a system that allows intuitive representation, execution and modification of the data reduction workflow, and has facilities for inspection and interaction with the data. Methods. The European Southern Observatory (ESO) has developed Reflex, an environment to automate data reduction workflows. Reflex is implemented as a package of customized components for the Kepler workflow engine. Kepler provides the graphical user interface to create an executable flowchart-like representation of the data reduction process. Key features of Reflex are a rule-based data organiser, infrastructure to re-use results, thorough book-keeping, data progeny tracking, interactive user interfaces, and a novel concept to exploit information created during data organisation for the workflow execution. Results. Automated workflows can greatly increase the e ciency of astronomical data reduction. In Reflex, workflows can be run noninteractively as a first step. Subsequent optimization can then be carried out while transparently re-using all unchanged intermediate products. We found that such workflows enable the reduction of complex data by non-expert users and minimizes mistakes due to book-keeping errors. Conclusions. Reflex includes novel concepts to increase the e ciency of astronomical data processing. While Reflex is a specific implementation of astronomical scientific workflows within the Kepler workflow engine, the overall design choices and methods can also be applied to other environments for running automated science workflows.

569 citations


Journal ArticleDOI
TL;DR: In this article, the authors combine VI photometry from OGLE-III with VISTA Variables in The Via Lactea survey and Two Micron All Sky Survey measurements of E(J? Ks ) to resolve the longstanding problem of the non-standard optical extinction toward the Galactic bulge.
Abstract: We combine VI photometry from OGLE-III with VISTA Variables in The Via Lactea survey and Two Micron All Sky Survey measurements of E(J ? Ks ) to resolve the longstanding problem of the non-standard optical extinction toward the Galactic bulge. We show that the extinction is well fit by the relation AI = 0.7465 ? E(V ? I) + 1.3700 ? E(J ? Ks ), or, equivalently, AI = 1.217 ? E(V ? I)(1 + 1.126 ? (E(J ? Ks )/E(V ? I) ? 0.3433)). The optical and near-IR reddening law toward the inner Galaxy approximately follows an RV 2.5 extinction curve with a dispersion , consistent with extragalactic investigations of the hosts of Type Ia SNe. Differential reddening is shown to be significant on scales as small as our mean field size of 6'. The intrinsic luminosity parameters of the Galactic bulge red clump (RC) are derived to be . Our measurements of the RC brightness, brightness dispersion, and number counts allow us to estimate several Galactic bulge structural parameters. We estimate a distance to the Galactic center of 8.20?kpc. We measure an upper bound on the tilt ? 40? between the bulge's major axis and the Sun-Galactic center line of sight, though our brightness peaks are consistent with predictions of an N-body model oriented at ? 25?. The number of RC stars suggests a total stellar mass for the Galactic bulge of ~2.3 ? 1010 M ? if one assumes a canonical Salpeter initial mass function (IMF), or ~1.6 ? 1010 M ? if one assumes a bottom-light Zoccali?IMF.

540 citations


Journal ArticleDOI
10 Jan 2013-Nature
TL;DR: Observations of diffuse CO gas inside the gap, with denser HCO+ gas along gap-crossing filaments are reported, which is sufficient to maintain accretion onto the star at the present rate.
Abstract: The formation of gaseous giant planets is thought to occur in the first few million years after stellar birth. Models predict that the process produces a deep gap in the dust component (shallower in the gas). Infrared observations of the disk around the young star HD 142527 (at a distance of about 140 parsecs from Earth) found an inner disk about 10 astronomical units (au) in radius (1 au is the Earth–Sun distance), surrounded by a particularly large gap and a disrupted outer disk beyond 140 au. This disruption is indicative of a perturbing planetary-mass body at about 90 au. Radio observations indicate that the bulk mass is molecular and lies in the outer disk, whose continuum emission has a horseshoe morphology. The high stellar accretion rate would deplete the inner disk in less than one year, and to sustain the observed accretion matter must therefore flow from the outer disk and cross the gap. In dynamical models, the putative protoplanets channel outer-disk material into gap-crossing bridges that feed stellar accretion through the inner disk. Here we report observations of diffuse CO gas inside the gap, with denser HCO+ gas along gap-crossing filaments. The estimated flow rate of the gas is in the range of 7 × 10^(−9) to 2 × 10^(−7) solar masses per year, which is sufficient to maintain accretion onto the star at the present rate.

465 citations


Journal ArticleDOI
TL;DR: In this paper, the authors provided a new tabulation of the transmission spectrum across the entire visible and infrared range of the hot Jupiter HD 189733b from UV to infrared using the STIS, ACS and WFC3 instruments.
Abstract: The hot Jupiter HD 189733b is the most extensively observed exoplanet. Its atmosphere has been detected and characterized in transmission and eclipse spectroscopy, and its phase curve measured at several wavelengths. This paper brings together the results of our campaign to obtain the complete transmission spectrum of the atmosphere of this planet from UV to infrared with the Hubble Space Telescope, using the STIS, ACS and WFC3 instruments. We provide a new tabulation of the transmission spectrum across the entire visible and infrared range. The radius ratio in each wavelength band was re-derived, where necessary, to ensure a consistent treatment of the bulk transit parameters and stellar limb darkening. Special care was taken to correct for, and derive realistic estimates of the uncertainties due to, both occulted and unocculted star spots. The combined spectrum is very different from the predictions of cloud-free models for hot Jupiters: it is dominated by Rayleigh scattering over the whole visible and near-infrared range, the only detected features being narrow sodium and potassium lines. We interpret this as the signature of a haze of condensate grains extending over at least five scaleheights. We show that a dust-dominated atmosphere could also explain several puzzling features of the emission spectrum and phase curves, including the large amplitude of the phase curve at 3.6 μm, the small hotspot longitude shift and the hot mid-infrared emission spectrum. We discuss possible compositions and derive some first-order estimates for the properties of the putative condensate haze/clouds. We finish by speculating that the dichotomy between the two observationally defined classes of hot Jupiter atmospheres, of which HD 189733b and HD 209458b are the prototypes, might not be whether they possess a temperature inversion, but whether they are clear or dusty. We also consider the possibility of a continuum of cloud properties between hot Jupiters, young Jupiters and L-type brown dwarfs.

449 citations


Journal ArticleDOI
TL;DR: In this article, the authors presented a catalog covering 1.62 deg{sup 2} of the COSMOS/UltraVISTA field with point-spread function (PSF) matched photometry in 30 photometric bands.
Abstract: We present a catalog covering 1.62 deg{sup 2} of the COSMOS/UltraVISTA field with point-spread function (PSF) matched photometry in 30 photometric bands. The catalog covers the wavelength range 0.15-24 {mu}m including the available GALEX, Subaru, Canada-France-Hawaii Telescope, VISTA, and Spitzer data. Catalog sources have been selected from the DR1 UltraVISTA K{sub s} band imaging that reaches a depth of K {sub s,tot} = 23.4 AB (90% completeness). The PSF-matched catalog is generated using position-dependent PSFs ensuring accurate colors across the entire field. Also included is a catalog of photometric redshifts (z {sub phot}) for all galaxies computed with the EAZY code. Comparison with spectroscopy from the zCOSMOS 10k bright sample shows that up to z {approx} 1.5 the z {sub phot} are accurate to {Delta}z/(1 + z) = 0.013, with a catastrophic outlier fraction of only 1.6%. The z {sub phot} also show good agreement with the z {sub phot} from the NEWFIRM Medium Band Survey out to z {approx} 3. A catalog of stellar masses and stellar population parameters for galaxies determined using the FAST spectral energy distribution fitting code is provided for all galaxies. Also included are rest-frame U - V and V - J colors, L {submore » 2800} and L {sub IR}. The UVJ color-color diagram confirms that the galaxy bi-modality is well-established out to z {approx} 2. Star-forming galaxies also obey a star-forming 'main sequence' out to z {approx} 2.5, and this sequence evolves in a manner consistent with previous measurements. The COSMOS/UltraVISTA K{sub s} -selected catalog covers a unique parameter space in both depth, area, and multi-wavelength coverage and promises to be a useful tool for studying the growth of the galaxy population out to z {approx} 3-4.« less

Journal ArticleDOI
TL;DR: In this paper, the Atacama Large Millimeter/submillimeter Array (ALMA) observations of the [C Pi] 158 mu m fine structure line and dust continuum emission from the host galaxies of five redshift 6 quasars were carried out in the extended array at 0'' 7 resolution.
Abstract: We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the [C Pi] 158 mu m fine structure line and dust continuum emission from the host galaxies of five redshift 6 quasars. We also report complementary observations of 250 GHz dust continuum and CO (6-5) line emission from the z = 6.00 quasar SDSS J231038.88+185519.7 using the IRAM facilities. The ALMA observations were carried out in the extended array at 0.'' 7 resolution. We have detected the line and dust continuum in all five objects. The derived [C Pi] line luminosities are 1.6 x 10(9) to 8.7 x 10(9) L-circle dot and the [C Pi]-to-FIR luminosity ratios are 2.9-5.1 x 10(-4), which is comparable to the values found in other high-redshift quasar-starburst systems and local ultra-luminous infrared galaxies. The sources are marginally resolved and the intrinsic source sizes (major axis FWHM) are constrained to be 0.'' 3-0.'' 6 (i.e., 1.7-3.5 kpc) for the [C Pi] line emission and 0.'' 2-0.'' 4 (i.e., 1.2-2.3 kpc) for the continuum. These measurements indicate that there is vigorous star formation over the central few kpc in the quasar host galaxies. The ALMA observations also constrain the dynamical properties of the star-forming gas in the nuclear region. The intensity-weighted velocity maps of three sources show clear velocity gradients. Such velocity gradients are consistent with a rotating, gravitationally bound gas component, although they are not uniquely interpreted as such. Under the simplifying assumption of rotation, the implied dynamical masses within the [C Pi]-emitting regions are of order 10(10)-10(11) M-circle dot. Given these estimates, the mass ratios between the supermassive black holes and the spheroidal bulge are an order of magnitude higher than the mean value found in local spheroidal galaxies, which is in agreement with results from previous CO observations of high redshift quasars.

Journal ArticleDOI
TL;DR: In this article, a large-scale investigation of the distribution, composition, age, and geomorphic settings of hydrous minerals on Mars, providing a sharpened global view of the early aqueous environments and their evolution with time.
Abstract: [1] The surface of Mars has preserved the record of early environments in which its basaltic crust was altered by liquid water. These aqueous environments have survived in the form of hydrological morphologies and alteration minerals, including clays and hydrated salts. Because these minerals probe on Earth aqueous environments compatible with biotic activity, understanding their formation processes on Mars is of great exobiological relevance and also offers insight into Earth's now erased ancient water environments. Using remote sensing, we conducted a large-scale investigation of the distribution, composition, age, and geomorphic settings of hydrous minerals on Mars, providing a sharpened global view of the early aqueous environments and their evolution with time. Aqueous alteration seems to have produced clays on a planetary scale but these are found to be restricted to the oldest observable terrains on Mars (∼4 Gyr). However, very diverse aqueous environments have also been found which suggest widespread, complex aqueous settings from the surface to kilometric depths, and spanning over 1 Gyr. By building a robust statistical sample of detections, the global trends inferred here attempt to provide a broad view of our current understanding of hydrous minerals on Mars and provide context for more localized, in-depth analyses. Collectively, these trends suggest that at least transient conditions have existed on Mars which may have been favorable for pre-biotic to biotic activity.

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, M. I. R. Alves2, C. Armitage-Caplan3  +467 moreInstitutions (88)
TL;DR: The ESA's Planck satellite was launched 14 May 2009 and has been scanning the microwave and sub-millimetre sky continuously since 12 August 2009 as discussed by the authors, where it has measured gravitational lensing of CMB anisotropies at greater than 25 sigma.
Abstract: The ESA's Planck satellite, dedicated to studying the early Universe and its subsequent evolution, was launched 14 May 2009 and has been scanning the microwave and submillimetre sky continuously since 12 August 2009. This paper gives an overview of the mission and its performance, the processing, analysis, and characteristics of the data, the scientific results, and the science data products and papers in the release. The science products include maps of the CMB and diffuse extragalactic foregrounds, a catalogue of compact Galactic and extragalactic sources, and a list of sources detected through the SZ effect. The likelihood code used to assess cosmological models against the Planck data and a lensing likelihood are described. Scientific results include robust support for the standard six-parameter LCDM model of cosmology and improved measurements of its parameters, including a highly significant deviation from scale invariance of the primordial power spectrum. The Planck values for these parameters and others derived from them are significantly different from those previously determined. Several large-scale anomalies in the temperature distribution of the CMB, first detected by WMAP, are confirmed with higher confidence. Planck sets new limits on the number and mass of neutrinos, and has measured gravitational lensing of CMB anisotropies at greater than 25 sigma. Planck finds no evidence for non-Gaussianity in the CMB. Planck's results agree well with results from the measurements of baryon acoustic oscillations. Planck finds a lower Hubble constant than found in some more local measures. Some tension is also present between the amplitude of matter fluctuations derived from CMB data and that derived from SZ data. The Planck and WMAP power spectra are offset from each other by an average level of about 2% around the first acoustic peak.

Journal ArticleDOI
TL;DR: In this article, the authors presented a candidate for the most distant galaxy known to date with a photometric redshift of z = 10.7$^{+0.4}$ (95% confidence limits; with z {lt} 9.2-1.2{$σ$}).
Abstract: We present a candidate for the most distant galaxy known to date with a photometric redshift of z = 10.7$^{+0.6}$ $_{-0.4}$ (95% confidence limits; with z {lt} 9.5 galaxies of known types ruled out at 7.2{$σ$}). This J-dropout Lyman break galaxy, named MACS0647-JD, was discovered as part of the Cluster Lensing and Supernova survey with Hubble (CLASH). We observe three magnified images of this galaxy due to strong gravitational lensing by the galaxy cluster MACSJ0647.7+7015 at z = 0.591. The images are magnified by factors of ~{}80, 7, and 2, with the brighter two observed at ~{}26th magnitude AB (~{}0.15 {$μ$}Jy) in the WFC3/IR F160W filter (~{}1.4-1.7 {$μ$}m) where they are detected at gsim12{$σ$}. All three images are also confidently detected at gsim6{$σ$} in F140W (~{}1.2-1.6 {$μ$}m), dropping out of detection from 15 lower wavelength Hubble Space Telescope filters (~{}0.2-1.4 {$μ$}m), and lacking bright detections in Spitzer/IRAC 3.6 {$μ$}m and 4.5 {$μ$}m imaging (~{}3.2-5.0 {$μ$}m). We rule out a broad range of possible lower redshift interlopers, including some previously published as high-redshift candidates. Our high-redshift conclusion is more conservative than if we had neglected a Bayesian photometric redshift prior. Given CLASH observations of 17 high-mass clusters to date, our discoveries of MACS0647-JD at z ~{} 10.8 and MACS1149-JD at z ~{} 9.6 are consistent with a lensed luminosity function extrapolated from lower redshifts. This would suggest that low-luminosity galaxies could have reionized the universe. However, given the significant uncertainties based on only two galaxies, we cannot yet rule out the sharp drop-off in number counts at z {gt}~{} 10 suggested by field searches.

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud, M. Ashdown3  +258 moreInstitutions (62)
TL;DR: In this paper, the authors used the Sunyaev-Zeldovich (SZ) and pressure profiles of 62 nearby massive clusters detected at high significance in the 14-month nominal survey.
Abstract: Taking advantage of the all-sky coverage and broad frequency range of the Planck satellite, we study the Sunyaev-Zeldovich (SZ) and pressure profiles of 62 nearby massive clusters detected at high significance in the 14-month nominal survey. Careful reconstruction of the SZ signal indicates that most clusters are individually detected at least out to R500. By stacking the radial profiles, we have statistically detected the radial SZ signal out to 3R500, i.e., at a density contrast of about 50-100, though the dispersion about the mean profile dominates the statistical errors across the whole radial range. Our measurement is fully consistent with previous Planck results on integrated SZ fluxes, further strengthening the agreement between SZ and X-ray measurements inside R500. Correcting for the effects of the Planck beam, we have calculated the corresponding pressure profiles. This new constraint from SZ measurements is consistent with the X-ray constraints from xmm in the region in which the profiles overlap (i.e., [0.1-1] R500), and is in fairly good agreement with theoretical predictions within the expected dispersion. At larger radii the average pressure profile is shallower than the predictions. Combining the SZ and X-ray observed profiles into a joint fit to a generalised pressure profile gives best-fit parameters [P0, c500, gamma, alpha, beta] = [6.41, 1.81, 0.31, 1.33, 4.13]. Using a reasonable hypothesis for the gas temperature in the cluster outskirts we reconstruct from our stacked pressure profile the gas mass fraction profile out to 3R500. Within the temperature driven uncertainties, our Planck constraints are compatible with the cosmic baryon fraction and expected gas fraction in halos.

Journal ArticleDOI
21 Mar 2013-Nature
TL;DR: A redshift survey at a wavelength of three millimetres, targeting carbon monoxide line emission from the star-forming molecular gas in the direction of extraordinarily bright millimetre-wave-selected sources, indicating that the fraction of dusty starburst galaxies at high redshifts is greater than previously thought.
Abstract: In the past decade, our understanding of galaxy evolution has been revolutionized by the discovery that luminous, dusty starburst galaxies were 1,000 times more abundant in the early Universe than at present. It has, however, been difficult to measure the complete redshift distribution of these objects, especially at the highest redshifts (z > 4). Here we report a redshift survey at a wavelength of three millimetres, targeting carbon monoxide line emission from the star-forming molecular gas in the direction of extraordinarily bright millimetre-wave-selected sources. High-resolution imaging demonstrates that these sources are strongly gravitationally lensed by foreground galaxies. We detect spectral lines in 23 out of 26 sources and multiple lines in 12 of those 23 sources, from which we obtain robust, unambiguous redshifts. At least 10 of the sources are found to lie at z > 4, indicating that the fraction of dusty starburst galaxies at high redshifts is greater than previously thought. Models of lens geometries in the sample indicate that the background objects are ultra-luminous infrared galaxies, powered by extreme bursts of star formation.

Journal ArticleDOI
TL;DR: In this paper, the authors show that the current star formation rate in the Central Molecular Zone (CMZ) is an order-of-magnitude lower than the rates predicted by the currently accepted prescriptions.
Abstract: The conversion of gas into stars is a fundamental process in astrophysics and cosmology. Stars are known to form from the gravitational collapse of dense clumps in interstellar molecular clouds, and it has been proposed that the resulting star formation rate is proportional to either the amount of mass above a threshold gas surface density, or the gas volume density. These star formation prescriptions appear to hold in nearby molecular clouds in our Milky Way Galaxy's disc as well as in distant galaxies where the star formation rates are often much larger. The inner 500 pc of our Galaxy, the Central Molecular Zone (CMZ), contains the largest concentration of dense, high-surface density molecular gas in the Milky Way, providing an environment where the validity of star formation prescriptions can be tested. Here, we show that by several measures, the current star formation rate in the CMZ is an order-of-magnitude lower than the rates predicted by the currently accepted prescriptions. In particular, the region 1 degrees several 10(3) cm(-3)) molecular gas - enough to form 1000 Orion-like clusters - but the present-day star formation rate within this gas is only equivalent to that in Orion. In addition to density, another property of molecular clouds must be included in the star formation prescription to predict the star formation rate in a given mass of molecular gas. We discuss which physical mechanisms might be responsible for suppressing star formation in the CMZ.

Journal ArticleDOI
TL;DR: In this paper, the authors present a comprehensive dataset of the 5500(±800) M⊙ infrared dark cloud SDC335, which exhibits a network of cold, dense, parsec-long filaments.
Abstract: The relative importance of primordial molecular cloud fragmentation versus large-scale accretion still remains to be assessed in the context of massive core/star formation. Studying the kinematics of the dense gas surrounding massive-star progenitors can tell us the extent to which large-scale flow of material impacts the growth in mass of star-forming cores. Here we present a comprehensive dataset of the 5500(±800) M⊙ infrared dark cloud SDC335.579-0.272 (hereafter SDC335), which exhibits a network of cold, dense, parsec-long filaments. Atacama Large Millimeter Array (ALMA) Cycle 0 observations reveal two massive star-forming cores, MM1 and MM2, sitting at the centre of SDC335 where the filaments intersect. With a gas mass of 545(-385+770) M⊙ contained within a source diameter of 0.05 pc, MM1 is one of the most massive, compact protostellar cores ever observed in the Galaxy. As a whole, SDC335 could potentially form an OB cluster similar to the Trapezium cluster in Orion. ALMA and Mopra single-dish observations of the SDC335 dense gas furthermore reveal that the kinematics of this hub-filament system are consistent with a global collapse of the cloud. These molecular-line data point towards an infall velocity Vinf = 0.7( ± 0.2) km s-1, and a total mass infall rate Ṁinf ≃ 2.5(±1.0) × 10-3 M⊙ yr-1 towards the central pc-size region of SDC335. This infall rate brings 750(±300) M⊙ of gas to the centre of the cloud per free-fall time (tff = 3 × 105 yr). This is enough to double the mass already present in the central pc-size region in 3.5-1.0+2.2 × tff. These values suggest that the global collapse of SDC335 over the past million year resulted in the formation of an early O-type star progenitor at the centre of the cloud’s gravitational potential well.

Journal ArticleDOI
TL;DR: In this article, the Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 0 survey of 126 submillimeter sources from the LABOCA ECDFS Submillimeter Survey (LESS) was presented.
Abstract: We present an Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 0 survey of 126 submillimeter sources from the LABOCA ECDFS Submillimeter Survey (LESS). Our 870 mu m survey with ALMA (ALESS) has produced maps similar to 3x deeper and with a beam area similar to 200x smaller than the original LESS observations, doubling the current number of interferometrically-observed submillimeter sources. The high resolution of these maps allows us to resolve sources that were previously blended and accurately identify the origin of the submillimeter emission. We discuss the creation of the ALESS submillimeter galaxy (SMG) catalog, including the main sample of 99 SMGs and a supplementary sample of 32 SMGs. We find that at least 35% (possibly up to 50%) of the detected LABOCA sources have been resolved into multiple SMGs, and that the average number of SMGs per LESS source increases with LESS flux density. Using the (now precisely known) SMG positions, we empirically test the theoretical expectation for the uncertainty in the single-dish source positions. We also compare our catalog to the previously predicted radio/mid-infrared counterparts, finding that 45% of the ALESS SMGs were missed by this method. Our similar to 1 ''.6 resolution allows us to measure a size of similar to 9 kpc x 5 kpc for the rest-frame similar to 300 mu m emission region in one resolved SMG, implying a star formation rate surface density of 80 M-circle dot yr(-1) kpc(-2), and we constrain the emission regions in the remaining SMGs to be <10 kpc. As the first statistically reliable survey of SMGs, this will provide the basis for an unbiased multiwavelength study of SMG properties.

Journal ArticleDOI
TL;DR: Using the Atacama Large Millimeter/submillimeter Array, this article conducted a blind redshift survey in the 3 mm atmospheric transmission window for 26 strongly lensed dusty star-forming galaxies (DSFGs) selected with the South Pole Telescope.
Abstract: Using the Atacama Large Millimeter/submillimeter Array, we have conducted a blind redshift survey in the 3 mm atmospheric transmission window for 26 strongly lensed dusty star-forming galaxies (DSFGs) selected with the South Pole Telescope. The sources were selected to have S_(1.4mm) > 20 mJy and a dust-like spectrum and, to remove low-z sources, not have bright radio (S_843MHz) 3. We discuss the effect of gravitational lensing on the redshift distribution and compare our measured redshift distribution to that of models in the literature.

Journal ArticleDOI
TL;DR: In this paper, a new geometric maser distance estimate to the active galaxy NGC 4258 is reported, which includes both disk warping and confocal elliptical maser orbits with differential precession.
Abstract: We report a new geometric maser distance estimate to the active galaxy NGC 4258. The data for the new model are maser line-of-sight (LOS) velocities and sky positions from 18 epochs of very long baseline interferometry observations, and LOS accelerations measured from a 10 yr monitoring program of the 22 GHz maser emission of NGC 4258. The new model includes both disk warping and confocal elliptical maser orbits with differential precession. The distance to NGC 4258 is 7.60 ± 0.17 ± 0.15 Mpc, a 3% uncertainty including formal fitting and systematic terms. The resulting Hubble constant, based on the use of the Cepheid variables in NGC 4258 to recalibrate the Cepheid distance scale, is H0 = 72.0 ± 3.0 km s −1 Mpc −1 .

Journal ArticleDOI
TL;DR: In this paper, the first counts of faint submillimetre galaxies (SMGs) in the 870-mu m band derived from arcsecond-resolution observations with the Atacama Large Millimeter Array (ALMA) were reported.
Abstract: We report the first counts of faint submillimetre galaxies (SMGs) in the 870-mu m band derived from arcsecond-resolution observations with the Atacama Large Millimeter Array (ALMA). We have used ALMA to map a sample of 122 870-mu m-selected submillimetre sources drawn from the 0 degrees.5x0 degrees.5 the Large Apex BOlometer CAmera (LABOCA) Extended Chandra Deep Field South submillimetre survey (LESS). These ALMA maps have an average depth of sigma 870(mu m) similar to 0.4 mJy, some approximately three times deeper than the original LABOCA survey and critically the angular resolution is more than an order of magnitude higher, FWHM of similar to 1.5 arcsec compared to similar to 19 arcsec for the LABOCA discovery map. This combination of sensitivity and resolution allows us to precisely pinpoint the SMGs contributing to the submillimetre sources from the LABOCA map, free from the effects of confusion. We show that our ALMA-derived SMG counts broadly agree with the submillimetre source counts from previous, lower resolution single-dish surveys, demonstrating that the bulk of the submillimetre sources are not caused by blending of unresolved SMGs. The difficulty which well-constrained theoretical models have in reproducing the high surface densities of SMGs, thus remains. However, our observations do show that all of the very brightest sources in the LESS sample, S-870 (mu m) greater than or similar to 12 mJy, comprise emission from multiple, fainter SMGs, each with 870-mu m fluxes of less than or similar to 9 mJy. This implies a natural limit to the star formation rate in SMGs of less than or similar to 10(3) M-circle dot yr(-1), which in turn suggests that the space densities of z > 1 galaxies with gas masses in excess of similar to 5 x 10(10) M-circle dot is <10(-5) Mpc(-3). We also discuss the influence of this blending on the identification and characterization of the SMG counterparts to these bright submillimetre sources and suggest that it may be responsible for previous claims that they lie at higher redshifts than fainter SMGs.

Journal ArticleDOI
25 Jul 2013-Nature
TL;DR: In this article, the mass-outflow rate of the starburst system NGC 253 was measured using the ALMA radio telescope and it was shown that the star-burst-driven superwind limits star-formation rate and the number of stars produced in this galaxy.
Abstract: Observations of the galaxy NGC 253 show that the cool molecular wind from the central starburst region limits star-formation activity and the final stellar content. New interferometric observations from the ALMA radio telescope reveal the central two kiloparsec region of the nearby starburst galaxy NGC 253 in unprecedented detail. Using the new data it is now possible to measure the mass-outflow rate of the starburst system for the first time. By ejecting around nine solar masses per year (three times the mass converted to stars in the same period), the starburst-driven 'superwind' limits the star-formation rate and the number of stars produced in this galaxy. The under-abundance of very massive galaxies1,2 in the Universe is frequently attributed to the effect of galactic winds3,4,5,6. Although ionized galactic winds are readily observable, most of the expelled mass (that is, the total mass flowing out from the nuclear region) is likely to be in atomic7,8 and molecular phases9,10,11 that are cooler than the ionized phases. Expanding molecular shells observed in starburst systems such as NGC 253 (ref. 12) and M 82 (refs 13, 14) may facilitate the entrainment of molecular gas in the wind. Although shell properties are well constrained12, determining the amount of outflowing gas emerging from such shells and the connection between this gas and the ionized wind requires spatial resolution better than 100 parsecs coupled with sensitivity to a wide range of spatial scales, a combination hitherto not available. Here we report observations of NGC 253, a nearby15 starburst galaxy (distance ∼ 3.4 megaparsecs) known to possess a wind16,17,18,19,20, that trace the cool molecular wind at 50-parsec resolution. At this resolution, the extraplanar molecular gas closely tracks the Hα filaments, and it appears to be connected to expanding molecular shells located in the starburst region. These observations allow us to determine that the molecular outflow rate is greater than 3 solar masses per year and probably about 9 solar masses per year. This implies a ratio of mass-outflow rate to star-formation rate of at least 1, and probably ∼3, indicating that the starburst-driven wind limits the star-formation activity and the final stellar content.

Journal ArticleDOI
TL;DR: In this article, high-dispersion observations of the Na I D λλ5890, 5896 and K I 7665, 7699 interstellar lines and the diffuse interstellar band at 5780 A in the spectra of 32 Type Ia supernovae are used as an independent means of probing dust extinction.
Abstract: High-dispersion observations of the Na I D λλ5890, 5896 and K I λλ7665, 7699 interstellar lines, and the diffuse interstellar band at 5780 A in the spectra of 32 Type Ia supernovae are used as an independent means of probing dust extinction. We show that the dust extinction of the objects where the diffuse interstellar band at 5780 A is detected is consistent with the visual extinction derived from the supernova colors. This strongly suggests that the dust producing the extinction is predominantly located in the interstellar medium of the host galaxies and not in circumstellar material associated with the progenitor system. One quarter of the supernovae display anomalously large Na I column densities in comparison to the amount of dust extinction derived from their colors. Remarkably, all of the cases of unusually strong Na I D absorption correspond to "Blueshifted" profiles in the classification scheme of Sternberg et al. This coincidence suggests that outflowing circumstellar gas is responsible for at least some of the cases of anomalously large Na I column densities. Two supernovae with unusually strong Na I D absorption showed essentially normal K I column densities for the dust extinction implied by their colors, but this does not appear to be a universal characteristic. Overall, we find the most accurate predictor of individual supernova extinction to be the equivalent width of the diffuse interstellar band at 5780 A, and provide an empirical relation for its use. Finally, we identify ways of producing significant enhancements of the Na abundance of circumstellar material in both the single-degenerate and double-degenerate scenarios for the progenitor system. © 2013. The American Astronomical Society. All rights reserved..

Journal ArticleDOI
TL;DR: In this article, the authors analyzed the resolved stellar populations of 473 massive star-forming galaxies at 0.7 {lt} z{lt} 1.5, with multi-wavelength broadband imaging from CANDELS and H{$α$} surface brightness profiles at the same kiloparsec resolution from 3D-HST.
Abstract: We analyze the resolved stellar populations of 473 massive star-forming galaxies at 0.7 {lt} z {lt} 1.5, with multi-wavelength broadband imaging from CANDELS and H{$α$} surface brightness profiles at the same kiloparsec resolution from 3D-HST. Together, this unique data set sheds light on how the assembled stellar mass is distributed within galaxies, and where new stars are being formed. We find the H{$α$} morphologies to resemble more closely those observed in the ACS I band than in the WFC3 H band, especially for the larger systems. We next derive a novel prescription for H{$α$} dust corrections, which accounts for extra extinction toward H II regions. The prescription leads to consistent star formation rate (SFR) estimates and reproduces the observed relation between the H{$α$}/UV luminosity ratio and visual extinction, on both a pixel-by-pixel and a galaxy-integrated level. We find the surface density of star formation to correlate with the surface density of assembled stellar mass for spatially resolved regions within galaxies, akin to the so-called ''main sequence of star formation'' established on a galaxy-integrated level. Deviations from this relation toward lower equivalent widths are found in the inner regions of galaxies. Clumps and spiral features, on the other hand, are associated with enhanced H{$α$} equivalent widths, bluer colors, and higher specific SFRs compared to the underlying disk. Their H{$α$}/UV luminosity ratio is lower than that of the underlying disk, suggesting that the ACS clump selection preferentially picks up those regions of elevated star formation activity that are the least obscured by dust. Our analysis emphasizes that monochromatic studies of galaxy structure can be severely limited by mass-to-light ratio variations due to dust and spatially inhomogeneous star formation histories.

Journal ArticleDOI
TL;DR: In this paper, the authors study the formation history of the Milky Way galaxy out to 2.5 and find that galaxies with present-day stellar masses of log(M) 10.7 built ~90% of their stellar mass since z = 1.5.
Abstract: Galaxies with the mass of the Milky Way dominate the stellar mass density of the universe but it is uncertain how and when they were assembled. Here we study progenitors of these galaxies out to z = 2.5, using data from the 3D-HST and CANDELS Treasury surveys. We find that galaxies with present-day stellar masses of log (M) 10.7 built ~90% of their stellar mass since z = 2.5, with most of the star formation occurring before z = 1. In marked contrast to the assembly history of massive elliptical galaxies, mass growth is not limited to large radii: the mass in the central 2 kpc of the galaxies increased by a factor of between z = 2.5 and z = 1. We therefore rule out simple models in which bulges were fully assembled at high redshift and disks gradually formed around them. Instead, bulges (and black holes) likely formed in lockstep with disks, through bar instabilities, migration, or other processes. We find that after z = 1 the growth in the central regions gradually stopped and the disk continued to be built up, consistent with recent studies of the gas distributions in z ~ 1 galaxies and the properties of many spiral galaxies today.

Journal ArticleDOI
TL;DR: In this article, the authors reported the discovery of a probable companion orbiting the young (10-17 Myr), dusty, early-type (A8) star HD 95086 at 56 AU in L' (3.8 {mu}m) images.
Abstract: Direct imaging has only begun to inventory the population of gas giant planets on wide orbits around young stars in the solar neighborhood. Following this approach, we carried out a deep imaging survey in the near-infrared using VLT/NaCo to search for substellar companions. Here we report the discovery of a probable companion orbiting the young (10-17 Myr), dusty, early-type (A8) star HD 95086 at 56 AU in L' (3.8 {mu}m) images. This discovery is based on observations with more than a year time lapse. Our first epoch clearly revealed the source at {approx_equal} 10{sigma}, while our second epoch lacks good observing conditions, yielding a {approx_equal} 3{sigma} detection. Various tests were thus made to rule out possible artifacts. This recovery is consistent with the signal at the first epoch but requires cleaner confirmation. Nevertheless, our astrometric precision suggests that the companion is comoving with the star with a 3{sigma} confidence level. The planetary nature of the source is reinforced by a non-detection in the Ks-band (2.18 {mu}m) images according to its possible extremely red Ks-L' color. Conversely, background contamination is rejected with good confidence level. The luminosity yields a predicted mass of about 4-5 M{sub Jup} (at 10-17 Myr) using ''hot-start''more » evolutionary models, making HD 95086 b the exoplanet with the lowest mass ever imaged around a star.« less

Journal ArticleDOI
TL;DR: In this article, the authors presented a compact source catalogue extracted from the APEX Telescope Large Area Survey of the GALaxy (ATLASGAL), which provides an unbiased database of dusty clumps in the inner Galaxy.
Abstract: Context. The APEX Telescope Large Area Survey of the GALaxy (ATLASGAL) is the first systematic survey of the inner Galactic plane in the sub-millimetre. The observations were carried out with the Large APEX Bolometer Camera (LABOCA), an array of 295 bolometers observing at 870 μ m (345 GHz). Aims. Here we present a first version of the compact source catalogue extracted from this survey. This catalogue provides an unbiased database of dusty clumps in the inner Galaxy. Methods. The construction of this catalogue was made using the source extraction routine SExtractor. We have cross-associated the obtained sources with the IRAS and MSX catalogues, in order to constrain their nature.Results. We have detected 6639 compact sources in the range from 330 ≤ l ≤ 21 degrees and |b | ≤ 1.5 degrees. The catalogue has a 99% completeness for sources with a peak flux above 6σ , which corresponds to a flux density of ~0.4 Jy beam-1 . The parameters extracted for sources with peak fluxes below the 6σ completeness threshold should be used with caution. Tests on simulated data find the uncertainty in the flux measurement to be ~12%, however, in more complex regions the flux values can be overestimated by a factor of 2 due to the additional background emission. Using a search radius of 30′′ we found that 40% of ATLASGAL compact sources are associated with an IRAS or MSX point source, but, ~50% are found to be associated with MSX 21 μ m fluxes above the local background level, which is probably a lower limit to the actual number of sources associated with star formation. Conclusions. Although infrared emission is found towards the majority of the clumps detected, this catalogue is still likely to include a significant number of clumps that are devoid of star formation activity and therefore excellent candidates for objects in the coldest, earliest stages of (high-mass) star formation.

Journal ArticleDOI
TL;DR: In this article, high-contrast observations of the circumstellar environment of the Herbig Ae/Be star HD 100546 were presented, where an emission source at a projected separation of 0.48 ± 0.4 AU was detected.
Abstract: We present high-contrast observations of the circumstellar environment of the Herbig Ae/Be star HD 100546. The final 3.8 μm image reveals an emission source at a projected separation of 0. 48 ± 0. �� 04 (corresponding to ∼47 ± 4 AU) at a position angle of 8. 9 ± 0. ◦ 9. The emission appears slightly extended with a point source component with an apparent magnitude of 13.2 ± 0.4 mag. The position of the source coincides with a local deficit in polarization fraction in near-infrared polarimetric imaging data, which probes the surface of the well-studied circumstellar disk of HD 100546. This suggests a possible physical link between the emission source and the disk. Assuming a disk inclination of ∼47 ◦ , the de-projected separation of the object is ∼68 AU. Assessing the likelihood of various scenarios, we favor an interpretation of the available high-contrast data with a planet in the process of forming. Follow-up observations in the coming years can easily distinguish between the different possible scenarios empirically. If confirmed, HD 100546 “b” would be a unique laboratory to study the formation process of a new planetary system, with one giant planet currently forming in the disk and a second planet possibly orbiting in the disk gap at smaller separations.