scispace - formally typeset
Search or ask a question
Institution

European Southern Observatory

FacilityGarching bei München, Germany
About: European Southern Observatory is a facility organization based out in Garching bei München, Germany. It is known for research contribution in the topics: Galaxy & Stars. The organization has 3594 authors who have published 16157 publications receiving 823095 citations. The organization is also known as: The European Southern Observatory,ESO & ESO.
Topics: Galaxy, Stars, Star formation, Redshift, Population


Papers
More filters
Journal ArticleDOI
TL;DR: The first observations of a rapidly rotating Be star, Eridani, using Earth-rotation synthesis on the Very Large Telescope (VLT) Interferometer are reported in this article.
Abstract: We report here the first observations of a rapidly rotating Be star, Eridani, using Earth-rotation synthesis on the Very Large Telescope (VLT) Interferometer. Our measures correspond to a 2a=2b= 1:56 0:05 apparent oblate star, 2a and 2b being the equivalent uniform disc angular diameters in the equatorial and polar direction. Considering the presence of a circum- stellar envelope (CSE) we argue that our measurement corresponds to a truly distorted star since Eridani exhibited negligible H emission during the interferometric observations. In this framework we conclude that the commonly adopted Roche approx- imation (uniform rotation and centrally condensed mass) should not apply to Eridani. This result opens new perspectives to basic astrophysical problems, such as rotationally enhanced mass loss and internal angular momentum distribution. In addition to its intimate relation with magnetism and pulsation, rapid rotation thus provides a key to the Be phenomenon: one of the outstanding non-resolved problems in stellar physics.

243 citations

Journal ArticleDOI
20 Dec 2012-Nature
TL;DR: It is reported that globular clusters can be grouped into a few distinct families on the basis of the radial distribution of blue stragglers, corresponding well to an effective ranking of the dynamical stage reached by stellar systems, thereby permitting a direct measure of the cluster dynamical age purely from observed properties.
Abstract: Globular clusters can be grouped into a few distinct families on the basis of the radial distribution of ‘blue stragglers’, stars with masses greater than those at the turn-off point on the main sequence; this grouping can yield a direct measure of the cluster’s dynamical age purely from observed properties. Star clusters formed at the same cosmic time may differ in the way they evolve dynamically, and a reliable method for determining cluster dynamical age would be a valuable tool for future studies. This study of a class of stars known as blue stragglers—among the most massive and luminous objects in old clusters—demonstrates that globular clusters can be grouped into a few distinct families based on the radial distribution of blue stragglers. Such a grouping allows a direct measure of the cluster dynamical age from purely observed properties. Globular star clusters that formed at the same cosmic time may have evolved rather differently from the dynamical point of view (because that evolution depends on the internal environment) through a variety of processes that tend progressively to segregate stars more massive than the average towards the cluster centre1. Therefore clusters with the same chronological age may have reached quite different stages of their dynamical history (that is, they may have different ‘dynamical ages’). Blue straggler stars have masses greater2 than those at the turn-off point on the main sequence and therefore must be the result of either a collision3,4 or a mass-transfer event5,6,7. Because they are among the most massive and luminous objects in old clusters, they can be used as test particles with which to probe dynamical evolution. Here we report that globular clusters can be grouped into a few distinct families on the basis of the radial distribution of blue stragglers. This grouping corresponds well to an effective ranking of the dynamical stage reached by stellar systems, thereby permitting a direct measure of the cluster dynamical age purely from observed properties.

242 citations

Journal ArticleDOI
TL;DR: In this article, available X-ray data are collected and organized concerning the iron and gas content of galaxy clusters and groups, together with the optical luminosity, mass, and iron abundance of cluster galaxies.
Abstract: Available X-ray data are collected and organized concerning the iron and gas content of galaxy clusters and groups, together with the optical luminosity, mass, and iron abundance of cluster galaxies. Moving from such a restricted number of cluster parameters, several astrophysical inferences are drawn. These include the evidence for rich clusters having evolved without much baryon exchange with their surroundings and having experienced very similar star formation histories. Groups are more gas-poor as compared with clusters and appear instead to have shed a major fraction of their original cosmic share of baryons, which indicates that galaxy clusters cannot have formed by assembling groups that are similar to the present-day ones. It is argued that this favors low-Ω universes, in which the growth of rich clusters is virtually complete at high redshifts. It is also argued that elemental abundance ratios in clusters are nearly solar, which is consistent with a similar proportion of supernovae of Type Ia and Type II having enriched both the solar neighborhood and clusters as a whole. Much of the iron in clusters appears to reside in the intracluster medium rather than inside galaxies, the precise ratio being a function of the Hubble constant. It appears that the baryon to star conversion in clusters has been nearly as efficient as that currently observed for the universe as a whole. Yet the metallicity of the clusters is ~5 times higher than the global metallicity found for the nearby universe. It is concluded that the intergalactic medium should have a metallicity ~1/3 of the solar value if stellar nucleosynthesis has proceeded in stars within field galaxies with the same efficiency as in stars within clusters of galaxies.

242 citations

Journal ArticleDOI
TL;DR: In this article, a detailed elemental abundances (O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, Y, and Ba) and stellar ages for 12 new microlensed dwarfs and subgiant stars in the Galactic bulge were presented.
Abstract: Based on high-resolution (R ≈ 42 000 to 48 000) and high signal-to-noise (S/N ≈ 50 to 150) spectra obtained with UVES/VLT, we present detailed elemental abundances (O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, Y, and Ba) and stellar ages for 12 new microlensed dwarf and subgiant stars in the Galactic bulge. Including previous microlensing events, the sample of homogeneously analysed bulge dwarfs has now grown to 26. The analysis is based on equivalent width measurements and standard 1-D LTE MARCS model stellar atmospheres. We also present NLTE Li abundances based on line synthesis of the ^7Li line at 670.8 nm. The results from the 26 microlensed dwarf and subgiant stars show that the bulge metallicity distribution (MDF) is double-peaked; one peak at [Fe/H] ≈ −0.6 and one at [Fe/H] ≈ + 0.3, and with a dearth of stars around solar metallicity. This is in contrast to the MDF derived from red giants in Baade’s window, which peaks at this exact value. A simple significance test shows that it is extremely unlikely to have such a gap in the microlensed dwarf star MDF if the dwarf stars are drawn from the giant star MDF. To resolve this issue we discuss several possibilities, but we can not settle on a conclusive solution for the observed differences. We further find that the metal-poor bulge dwarf stars arepredominantly old with ages greater than 10 Gyr, while the metal-rich bulge dwarf stars show a wide range of ages. The metal-poor bulge sample is very similar to the Galactic thick disk in terms of average metallicity, elemental abundance trends, and stellar ages. Speculatively, the metal-rich bulge population might be the manifestation of the inner thin disk. If so, the two bulge populations could support the recent findings, based on kinematics, that there are no signatures of a classical bulge and that the Milky Way is a pure-disk galaxy. Also, recent claims of a flat IMF in the bulge based on the MDF of giant stars may have to be revised based on the MDF and abundance trends probed by our microlensed dwarf stars.

242 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured the metallicities of a large sample of stars in four nearby dwarf spheroidal galaxies (dSph's): Sculptor, Sextans, Fornax, and Carina.
Abstract: As part of the Dwarf galaxies Abundances and Radial-velocities Team (DART) program, we have measured the metallicities of a large sample of stars in four nearby dwarf spheroidal galaxies (dSph's): Sculptor, Sextans, Fornax, and Carina. The low mean metal abundances and the presence of very old stellar populations in these galaxies have supported the view that they are fossils from the early universe. However, contrary to naive expectations, we find a significant lack of stars with metallicities below [Fe/H] ~ -3 dex in all four systems. This suggests that the gas that made up the stars in these systems had been uniformly enriched prior to their formation. Furthermore, the metal-poor tail of the dSph metallicity distribution is significantly different from that of the Galactic halo. These findings show that the progenitors of nearby dSph's appear to have been fundamentally different from the building blocks of the Milky Way, even at the earliest epochs.

242 citations


Authors

Showing all 3617 results

NameH-indexPapersCitations
Robert C. Nichol187851162994
Richard S. Ellis169882136011
Rob Ivison1661161102314
Alvio Renzini16290895452
Timothy C. Beers156934102581
Krzysztof M. Gorski132380105912
Emanuele Daddi12958163187
P. R. Christensen12731388445
Mark Dickinson12438966770
Christopher W. Stubbs122622109429
Eva K. Grebel11886383915
Martin Asplund11861252527
Jesper Sollerman11872653436
E. F. van Dishoeck11574249190
Jørgen Christensen-Dalsgaard11458548272
Network Information
Related Institutions (5)
INAF
30.8K papers, 1.2M citations

98% related

Space Telescope Science Institute
14.1K papers, 947.2K citations

96% related

National Radio Astronomy Observatory
8.1K papers, 431.1K citations

95% related

Kapteyn Astronomical Institute
3.5K papers, 180.9K citations

95% related

Institut d'Astrophysique de Paris
7.6K papers, 491.5K citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202231
2021557
2020920
2019759
2018941