scispace - formally typeset
Search or ask a question
Institution

European Southern Observatory

FacilityGarching bei München, Germany
About: European Southern Observatory is a facility organization based out in Garching bei München, Germany. It is known for research contribution in the topics: Galaxy & Stars. The organization has 3594 authors who have published 16157 publications receiving 823095 citations. The organization is also known as: The European Southern Observatory,ESO & ESO.
Topics: Galaxy, Stars, Star formation, Redshift, Population


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors focus on outflows traced by optical and CO emission lines, and highlight the observational uncertainties involved and the assumptions required when deriving kinetic coupling efficiencies (that is, outflow kinetic power as a fraction of AGN luminosity) from typical observations.
Abstract: It is twenty years since the seminal works by Magorrian and co-authors and by Silk and Rees, which, along with other related work, ignited an explosion of publications connecting active galactic nucleus (AGN)-driven outflows to galaxy evolution. With a surge in observations of AGN outflows, studies are attempting to test AGN feedback models directly using the outflow properties. With a focus on outflows traced by optical and CO emission lines, we discuss significant challenges that greatly complicate this task, from both an observational and theoretical perspective. We highlight the observational uncertainties involved and the assumptions required when deriving kinetic coupling efficiencies (that is, outflow kinetic power as a fraction of AGN luminosity) from typical observations. Based on recent models we demonstrate that extreme caution should be taken when comparing observationally derived kinetic coupling efficiencies to coupling efficiencies from fiducial feedback models.

232 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the ATLASGAL survey covering 420 sq. degree of the Galactic plane at 870 micron; and used the MRE-GLC method to identify the population of embedded sources throughout the inner Galaxy.
Abstract: The formation processes and the evolutionary stages of high-mass stars are poorly understood compared to low-mass stars. Large-scale surveys are needed to provide an unbiased census of high column density sites which can potentially host precursors to high-mass stars. Here we use the ATLASGAL survey covering 420 sq. degree of the Galactic plane at 870 micron; and use the MRE-GLC method to identify the population of embedded sources throughout the inner Galaxy. We identify in total 10952 compact sub-millimeter sources with fluxes above 5 sigma. Completeness tests show that our catalogue is 97% complete above 5 sigma and >99% complete above 7 sigma. We correlate this sample with mid-infrared point source catalogues (MSX at 21.3 micron and WISE at 22 micron) and determine a lower limit of ~33% that are associated with embedded protostellar objects. We note that the proportion of clumps associated with mid-infrared sources increases with increasing flux density, achieving a rather constant fraction of ~75% of all clumps with fluxes over 5 Jy/beam being associated with star-formation. Examining the source counts as a function of Galactic longitude we are able to identify the most prominent star forming regions in the Galaxy. From the fraction of the likely massive quiescent clumps (~25%) we estimate a formation time-scale of ~7.25+/-2.50 x 10^4~yr for the deeply embedded phase before the emergence of luminous YSOs. Such a short duration for the formation of high-mass stars in massive clumps clearly proves that the earliest phases have to be dynamic with supersonic motions.

232 citations

Journal ArticleDOI
TL;DR: In this paper, a self-consistent hydrodynamical simulation of a Milky Way-like galaxy at a resolution of 0.05 pc is presented, which includes star formation and a new implementation of stellar feedback through photoionization, radiative pressure and supernovae.
Abstract: We present a self-consistent hydrodynamical simulation of a Milky Way-like galaxy at a resolution of 0.05 pc. The model includes star formation and a new implementation of stellar feedback through photoionization, radiative pressure and supernovae. The simulation resolves the structure of the interstellar medium at sub-parsec resolution for a few cloud lifetimes and at 0.05 pc for about a cloud-crossing time. The turbulence cascade and gravitation from kpc scales are de facto included in smaller structures like molecular clouds. We show that the formation of a bar influences the dynamics of the central ˜100 pc by creating resonances. At larger radii, the spiral arms host the formation of regularly spaced clouds: beads on a string and spurs. These instabilities pump turbulent energy into the gas, generally in the supersonic regime. Because of asymmetric drift, the supernovae explode outside their gaseous nursery, which diminishes the effect of feedback on the structure of clouds. The evolution of clouds is thus mostly due to fragmentation and gas consumption, regulated mainly by supersonic turbulence. The transition from turbulence-supported to self-gravitating gas is detected in the gas density probability distribution function at ˜2000 cm-3. The power-spectrum density suggests that gravitation governs the hierarchical organization of structures from the galactic scale down to a few pc.

231 citations

Journal ArticleDOI
TL;DR: In this article, the influence of the stellar iron content on the Cepheid period-luminosity (PL) relation in the V and K bands was investigated and it was shown that metal-rich Cepheids appear to be systematically fainter than metal-poor ones.
Abstract: Context. The Cepheid period-luminosity (PL) relation is unquestionably one of the most powerful tools at our disposal for determining the extragalactic distance scale. While significant progress has been made in the past few years towards its understanding and characterization both on the observational and theoretical sides, the debate on the influence that chemical composition may have on the PL relation is still unsettled.Aims. With the aim to assess the influence of the stellar iron content on the PL relation in the V and K bands, we have related the V -band and the K -band residuals from the standard PL relations of Freedman et al. (2001, ApJ, 553, 47) and Persson et al. (2004, AJ, 128, 2239), respectively, to [Fe/H].Methods. We used direct measurements of the iron abundances of 68 Galactic and Magellanic Cepheids from FEROS and UVES high-resolution and high signal-to-noise spectra.Results. We find a mean iron abundance ([Fe/H]) about solar (= 0.10) for our Galactic sample (32 stars), ~-0.33 dex (σ = 0.13) for the Large Magellanic Cloud (LMC) sample (22 stars) and ~-0.75 dex (σ = 0.08) for the Small Magellanic Cloud (SMC) sample (14 stars). Our abundance measurements of the Magellanic Cepheids double the number of stars studied up to now at high resolution. The metallicity affects the V -band Cepheid PL relation and metal-rich Cepheids appear to be systematically fainter than metal-poor ones. These findings depend neither on the adopted distance scale for Galactic Cepheids nor on the adopted LMC distance modulus. Current data do not allow us to reach a firm conclusion concerning the metallicity dependence of the K -band PL relation. The new Galactic distances indicate a small effect, whereas the old ones support a marginal effect. Conclusions. Recent robust estimates of the LMC distance and current results indicate that the Cepheid PL relation is not Universal.

231 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the analysis of the faint galaxy population in the Advanced Camera for Surveys (ACS) Early Release Observation fields VV 29 (UGC 10214) and NGC 4676.
Abstract: We present the analysis of the faint galaxy population in the Advanced Camera for Surveys (ACS) Early Release Observation fields VV 29 (UGC 10214) and NGC 4676. These observations cover a total area of 26.3 arcmin 2 and have depths close to that of the Hubble Deep Fields in the deepest part of the VV 29 image, with 10 � detection limits for point sources of 27.8, 27.6, and 27.2 AB magnitudes in the g F475W , VF606W ,a ndIF814W bands, respectively. Measuring the faint galaxy number count distribution is a difficult task, with different groups arriving at widely varying results even on the same data set. Here we attempt to thoroughly consider all aspects relevant for faint galaxy counting and photometry, developing methods that are based on public software and that are easily reproducible by other astronomers. Using simulations we determine the best SExtractor parameters for the detection of faint galaxies in deep Hubble Space Telescope observations, paying special attention to the issue of deblending, which significantly affects the normalization and shape of the number count distribution. We confirm, as claimed by Bernstein, Freedman, & Madore, that Kron-like magnitudes, such as the ones generated by SExtractor, can miss more than half of the light offaint galaxies, what dramatically affects the slope of the number counts. We show how to correct for this effect, which depends sensitively not only on the characteristics of the observations, but also on the choice of SExtractor parameters. We present catalogs for the VV 29 and NGC 4676 fields with photometry in the F475W, F606W, and F814W bands. We also show that combining the Bayesian software BPZ with superb ACS data and new spectral templates enables us to estimate reliable photometric redshifts for a significant fraction of galaxies with as few as three filters. After correcting for selection effects, we measure slopes of 0:32 � 0:01for 22 25:5 can be well approximated in all our filters by a passive luminosity evolution model based on the COMBO-17 luminosity function (� ¼� 1:5), with a strong merging rate following the prescription of

231 citations


Authors

Showing all 3617 results

NameH-indexPapersCitations
Robert C. Nichol187851162994
Richard S. Ellis169882136011
Rob Ivison1661161102314
Alvio Renzini16290895452
Timothy C. Beers156934102581
Krzysztof M. Gorski132380105912
Emanuele Daddi12958163187
P. R. Christensen12731388445
Mark Dickinson12438966770
Christopher W. Stubbs122622109429
Eva K. Grebel11886383915
Martin Asplund11861252527
Jesper Sollerman11872653436
E. F. van Dishoeck11574249190
Jørgen Christensen-Dalsgaard11458548272
Network Information
Related Institutions (5)
INAF
30.8K papers, 1.2M citations

98% related

Space Telescope Science Institute
14.1K papers, 947.2K citations

96% related

National Radio Astronomy Observatory
8.1K papers, 431.1K citations

95% related

Kapteyn Astronomical Institute
3.5K papers, 180.9K citations

95% related

Institut d'Astrophysique de Paris
7.6K papers, 491.5K citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202231
2021557
2020920
2019759
2018941