scispace - formally typeset
Search or ask a question
Institution

European Southern Observatory

FacilityGarching bei München, Germany
About: European Southern Observatory is a facility organization based out in Garching bei München, Germany. It is known for research contribution in the topics: Galaxy & Stars. The organization has 3594 authors who have published 16157 publications receiving 823095 citations. The organization is also known as: The European Southern Observatory,ESO & ESO.
Topics: Galaxy, Stars, Star formation, Redshift, Population


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors used a prior based on the Two Degree Field (2dF) Redshift Survey constraint on ΩM and assuming a flat universe, they found that the equation of state parameter of the dark energy lies in the range -1.48 -1, and obtained w < -0.73 at 95% confidence.
Abstract: The High-z Supernova Search Team has discovered and observed eight new supernovae in the redshift interval z = 0.3-1.2. These independent observations, analyzed by similar but distinct methods, confirm the results of Riess and Perlmutter and coworkers that supernova luminosity distances imply an accelerating universe. More importantly, they extend the redshift range of consistently observed Type Ia supernovae (SNe Ia) to z ≈ 1, where the signature of cosmological effects has the opposite sign of some plausible systematic effects. Consequently, these measurements not only provide another quantitative confirmation of the importance of dark energy, but also constitute a powerful qualitative test for the cosmological origin of cosmic acceleration. We find a rate for SN Ia of (1.4 ± 0.5) × 10-4 h3 Mpc-3 yr-1 at a mean redshift of 0.5. We present distances and host extinctions for 230 SN Ia. These place the following constraints on cosmological quantities: if the equation of state parameter of the dark energy is w = -1, then H0t0 = 0.96 ± 0.04, and ΩΛ - 1.4ΩM = 0.35 ± 0.14. Including the constraint of a flat universe, we find ΩM = 0.28 ± 0.05, independent of any large-scale structure measurements. Adopting a prior based on the Two Degree Field (2dF) Redshift Survey constraint on ΩM and assuming a flat universe, we find that the equation of state parameter of the dark energy lies in the range -1.48 -1, we obtain w < -0.73 at 95% confidence. These constraints are similar in precision and in value to recent results reported using the WMAP satellite, also in combination with the 2dF Redshift Survey.

1,779 citations

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, M. I. R. Alves2, C. Armitage-Caplan3  +469 moreInstitutions (89)
TL;DR: The European Space Agency's Planck satellite, dedicated to studying the early Universe and its subsequent evolution, was launched 14 May 2009 and has been scanning the microwave and submillimetre sky continuously since 12 August 2009 as discussed by the authors.
Abstract: The European Space Agency’s Planck satellite, dedicated to studying the early Universe and its subsequent evolution, was launched 14 May 2009 and has been scanning the microwave and submillimetre sky continuously since 12 August 2009. In March 2013, ESA and the Planck Collaboration released the initial cosmology products based on the first 15.5 months of Planck data, along with a set of scientific and technical papers and a web-based explanatory supplement. This paper gives an overview of the mission and its performance, the processing, analysis, and characteristics of the data, the scientific results, and the science data products and papers in the release. The science products include maps of the cosmic microwave background (CMB) and diffuse extragalactic foregrounds, a catalogue of compact Galactic and extragalactic sources, and a list of sources detected through the Sunyaev-Zeldovich effect. The likelihood code used to assess cosmological models against the Planck data and a lensing likelihood are described. Scientific results include robust support for the standard six-parameter ΛCDM model of cosmology and improved measurements of its parameters, including a highly significant deviation from scale invariance of the primordial power spectrum. The Planck values for these parameters and others derived from them are significantly different from those previously determined. Several large-scale anomalies in the temperature distribution of the CMB, first detected by WMAP, are confirmed with higher confidence. Planck sets new limits on the number and mass of neutrinos, and has measured gravitational lensing of CMB anisotropies at greater than 25σ. Planck finds no evidence for non-Gaussianity in the CMB. Planck’s results agree well with results from the measurements of baryon acoustic oscillations. Planck finds a lower Hubble constant than found in some more local measures. Some tension is also present between the amplitude of matter fluctuations (σ8) derived from CMB data and that derived from Sunyaev-Zeldovich data. The Planck and WMAP power spectra are offset from each other by an average level of about 2% around the first acoustic peak. Analysis of Planck polarization data is not yet mature, therefore polarization results are not released, although the robust detection of E-mode polarization around CMB hot and cold spots is shown graphically.

1,719 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the relationship between the local environment of galaxies and their star formation rate (SFR) in the Great Observatories Origins Deep Survey, GOODS, at z∼1.
Abstract: Aims We study the relationship between the local environment of galaxies and their star formation rate (SFR) in the Great Observatories Origins Deep Survey, GOODS, at z∼1 Methods We use ultradeep imaging at 24� m with the MIPS camera onboard Spitzer to determine the contribution of obscured light to the SFR of galaxies over the redshift range 08≤ z ≤12 Accurate galaxy densities are measured thanks to the large sample of ∼1200 spectroscopic redshifts with high (∼70 %) spectroscopic completeness Morphology and stellar masses are derived from deep HST-ACS imaging, supplemented by ground based imaging programs and photometry from the IRAC camera onboard Spitzer Results We show that the star formation‐density relation observed locally was reversed at z∼ 1: the average SFR of an individual galaxy increased with local galaxy density when the universe was less than half its present age Hierarchical galaxy for mation models (simulated lightcones from the Millennium model) predicted such a reversal to occur only at earlier epochs (z>2) and at a lower level We present a remarkable structure at z∼ 1016, containing X-ray traced galaxy concentrations, which will eventually merge into a Virgo-like cluster This structure illustrates how the ind ividual SFR of galaxies increases with density and shows that it is the∼1‐2 Mpc scale that affects most the star formation in galaxies at z∼ 1 The SFR of z∼ 1 galaxies is found to correlate with stellar mass suggesting that mass plays a role in the observed star formation‐density trend However the specific SFR ( =SFR/M⋆) decreases with stellar mass while it increases with galaxy density, which i mplies that the environment does directly affect the star formation activity of galaxies Major mergers do not appear to be the unique or even major cause for this effect since nearly half (46 %) of the luminous infrared galaxies (LIRGs) at z∼ 1 present the HST-ACS morphology of spirals, while only a third present a clear signature of major mergers The remaining galaxies are divided into compact (9 %) and irregular (14 %) galaxies Moreover, the specific SFR o f major mergers is only marginally stronger than that of spirals Conclusions These findings constrain the influence of the growth of large- scale structures on the star formation history of galaxies Reproducing the SFR‐density relation at z∼ 1 is a new challenge for models, requiring a correct balance between mass assembly through mergers and in-situ star formation at early epochs

1,696 citations

Journal ArticleDOI
TL;DR: In this paper, a set of high-redshift supernovae were used to confirm previous supernova evidence for an accelerating universe, and the supernova results were combined with independent flat-universe measurements of the mass density from CMB and galaxy redshift distortion data, they provided a measurement of $w=-1.05^{+0.15}-0.09$ if w is assumed to be constant in time.
Abstract: We report measurements of $\Omega_M$, $\Omega_\Lambda$, and w from eleven supernovae at z=0.36-0.86 with high-quality lightcurves measured using WFPC-2 on the HST. This is an independent set of high-redshift supernovae that confirms previous supernova evidence for an accelerating Universe. Combined with earlier Supernova Cosmology Project data, the new supernovae yield a flat-universe measurement of the mass density $\Omega_M=0.25^{+0.07}_{-0.06}$ (statistical) $\pm0.04$ (identified systematics), or equivalently, a cosmological constant of $\Omega_\Lambda=0.75^{+0.06}_{-0.07}$ (statistical) $\pm0.04$ (identified systematics). When the supernova results are combined with independent flat-universe measurements of $\Omega_M$ from CMB and galaxy redshift distortion data, they provide a measurement of $w=-1.05^{+0.15}_{-0.20}$ (statistical) $\pm0.09$ (identified systematic), if w is assumed to be constant in time. The new data offer greatly improved color measurements of the high-redshift supernovae, and hence improved host-galaxy extinction estimates. These extinction measurements show no anomalous negative E(B-V) at high redshift. The precision of the measurements is such that it is possible to perform a host-galaxy extinction correction directly for individual supernovae without any assumptions or priors on the parent E(B-V) distribution. Our cosmological fits using full extinction corrections confirm that dark energy is required with $P(\Omega_\Lambda>0)>0.99$, a result consistent with previous and current supernova analyses which rely upon the identification of a low-extinction subset or prior assumptions concerning the intrinsic extinction distribution.

1,687 citations

Journal ArticleDOI
TL;DR: The GOODS survey as mentioned in this paper is based on multiband imaging data obtained with the Hubble Space Telescope and the Advanced Camera for Surveys (ACS) and covers roughly 320 arcmin2 in the ACS F435W, F606w, F814W, and F850LP bands, divided into two well-studied fields.
Abstract: This special issue of the Astrophysical Journal Letters is dedicated to presenting initial results from the Great Observatories Origins Deep Survey (GOODS) that are primarily, but not exclusively, based on multiband imaging data obtained with the Hubble Space Telescope and the Advanced Camera for Surveys (ACS). The survey covers roughly 320 arcmin2 in the ACS F435W, F606W, F814W, and F850LP bands, divided into two well-studied fields. Existing deep observations from the Chandra X-Ray Observatory and ground-based facilities are supplemented with new, deep imaging in the optical and near-infrared from the European Southern Observatory and from the Kitt Peak National Observatory. Deep observations with the Space Infrared Telescope Facility are scheduled. Reduced data from all facilities are being released worldwide within 3-6 months of acquisition. Together, this data set provides two deep reference fields for studies of distant normal and active galaxies, supernovae, and faint stars in our own Galaxy. This Letter serves to outline the survey strategy and describe the specific data that have been used in the accompanying letters, summarizing the reduction procedures and sensitivity limits.

1,678 citations


Authors

Showing all 3617 results

NameH-indexPapersCitations
Robert C. Nichol187851162994
Richard S. Ellis169882136011
Rob Ivison1661161102314
Alvio Renzini16290895452
Timothy C. Beers156934102581
Krzysztof M. Gorski132380105912
Emanuele Daddi12958163187
P. R. Christensen12731388445
Mark Dickinson12438966770
Christopher W. Stubbs122622109429
Eva K. Grebel11886383915
Martin Asplund11861252527
Jesper Sollerman11872653436
E. F. van Dishoeck11574249190
Jørgen Christensen-Dalsgaard11458548272
Network Information
Related Institutions (5)
INAF
30.8K papers, 1.2M citations

98% related

Space Telescope Science Institute
14.1K papers, 947.2K citations

96% related

National Radio Astronomy Observatory
8.1K papers, 431.1K citations

95% related

Kapteyn Astronomical Institute
3.5K papers, 180.9K citations

95% related

Institut d'Astrophysique de Paris
7.6K papers, 491.5K citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202231
2021557
2020920
2019759
2018941