scispace - formally typeset
Search or ask a question
Institution

European Southern Observatory

FacilityGarching bei München, Germany
About: European Southern Observatory is a facility organization based out in Garching bei München, Germany. It is known for research contribution in the topics: Galaxy & Stars. The organization has 3594 authors who have published 16157 publications receiving 823095 citations. The organization is also known as: The European Southern Observatory,ESO & ESO.
Topics: Galaxy, Stars, Star formation, Redshift, Population


Papers
More filters
Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, D. Alina3, D. Alina4  +252 moreInstitutions (60)
TL;DR: In this article, the authors presented an overview of the polarized sky as seen by Planck HFI at 353 GHz, which is the most sensitive Planck channel for dust polarization.
Abstract: This paper presents an overview of the polarized sky as seen by Planck HFI at 353 GHz, which is the most sensitive Planck channel for dust polarization. We construct and analyse maps of dust polarization fraction and polarization angle at 1° resolution, taking into account noise bias and possible systematic effects. The sensitivity of the Planck HFI polarization measurements allows for the first time a mapping of Galactic dust polarized emission on large scales, including low column density regions. We find that the maximum observed dust polarization fraction is high (pmax = 19.8%), in particular in some regions of moderate hydrogen column density (NH < 2 × 1021 cm-2). The polarization fraction displays a large scatter at NH below a few 1021 cm-2. There is a general decrease in the dust polarization fraction with increasing column density above NH ≃ 1 × 1021 cm-2 and in particular a sharp drop above NH ≃ 1.5 × 1022 cm-2. We characterize the spatial structure of the polarization angle using the angle dispersion function. We find that the polarization angle is ordered over extended areas of several square degrees, separated by filamentary structures of high angle dispersion function. These appear as interfaces where the sky projection of the magnetic field changes abruptly without variations in the column density. The polarization fraction is found to be anti-correlated with the dispersion of polarization angles. These results suggest that, at the resolution of 1°, depolarization is due mainly to fluctuations in the magnetic field orientation along the line of sight, rather than to the loss of grain alignment in shielded regions. We also compare the polarization of thermal dust emission with that of synchrotron measured with Planck, low-frequency radio data, and Faraday rotation measurements toward extragalactic sources. These components bear resemblance along the Galactic plane and in some regions such as the Fan and North Polar Spur regions. The poor match observed in other regions shows, however, that dust, cosmic-ray electrons, and thermal electrons generally sample different parts of the line of sight.

368 citations

Journal ArticleDOI
TL;DR: In this article, the spectral energy distribution (SED) and photometric redshifts were derived for a sample of 1542 optically identified sources detected with XMM in the COSMOS field.
Abstract: We present photometric redshifts and spectral energy distribution (SED) classifications for a sample of 1542 optically identified sources detected with XMM in the COSMOS field. Our template fitting classifies 46 sources as stars and 464 as nonactive galaxies, while the remaining 1032 require templates with an active galactic nucleus (AGN) contribution. High accuracy in the derived photometric redshifts was accomplished as the result of (1) photometry in up to 30 bands with high-significance detections, (2) a new set of SED templates, including 18 hybrids covering the far-UV to mid-infrared, which have been constructed by the combination of AGNs and nonactive galaxies templates, and (3) multiepoch observations that have been used to correct for variability (most important for type 1 AGNs). The reliability of the photometric redshifts is evaluated using the subsample of 442 sources with measured spectroscopic redshifts. We achieved an accuracy of σΔz/(1+z_(spec)) = 0.014 for i∗_(AB) < 22.5 (σΔz/(1+z_(spec)) ~ 0.015 for i∗_(AB) < 24.5). The high accuracies were accomplished for both type 2 (where the SED is often dominated by the host galaxy) and type 1 AGNs and QSOs out to z = 4.5. The number of outliers is a large improvement over previous photometric redshift estimates for X-ray-selected sources (4.0% and 4.8% outliers for i∗_(AB) < 22.5 and i∗_(AB) < 24.5, respectively). We show that the intermediate band photometry is vital to achieving accurate photometric redshifts for AGNs, whereas the broad SED coverage provided by mid-infrared (Spitzer/IRAC) bands is important to reduce the number of outliers for normal galaxies.

368 citations

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, M. I. R. Alves2, C. Armitage-Caplan3  +467 moreInstitutions (88)
TL;DR: The ESA's Planck satellite was launched 14 May 2009 and has been scanning the microwave and sub-millimetre sky continuously since 12 August 2009 as discussed by the authors, where it has measured gravitational lensing of CMB anisotropies at greater than 25 sigma.
Abstract: The ESA's Planck satellite, dedicated to studying the early Universe and its subsequent evolution, was launched 14 May 2009 and has been scanning the microwave and submillimetre sky continuously since 12 August 2009. This paper gives an overview of the mission and its performance, the processing, analysis, and characteristics of the data, the scientific results, and the science data products and papers in the release. The science products include maps of the CMB and diffuse extragalactic foregrounds, a catalogue of compact Galactic and extragalactic sources, and a list of sources detected through the SZ effect. The likelihood code used to assess cosmological models against the Planck data and a lensing likelihood are described. Scientific results include robust support for the standard six-parameter LCDM model of cosmology and improved measurements of its parameters, including a highly significant deviation from scale invariance of the primordial power spectrum. The Planck values for these parameters and others derived from them are significantly different from those previously determined. Several large-scale anomalies in the temperature distribution of the CMB, first detected by WMAP, are confirmed with higher confidence. Planck sets new limits on the number and mass of neutrinos, and has measured gravitational lensing of CMB anisotropies at greater than 25 sigma. Planck finds no evidence for non-Gaussianity in the CMB. Planck's results agree well with results from the measurements of baryon acoustic oscillations. Planck finds a lower Hubble constant than found in some more local measures. Some tension is also present between the amplitude of matter fluctuations derived from CMB data and that derived from SZ data. The Planck and WMAP power spectra are offset from each other by an average level of about 2% around the first acoustic peak.

367 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the clustering properties and multiwavelength spectral energy distributions of a complete sample of 162 Lyα-emitting (LAE) galaxies at z 3.1 discovered in deep narrowband MUSYC imaging.
Abstract: We studied the clustering properties and multiwavelength spectral energy distributions of a complete sample of 162 Lyα-emitting (LAE) galaxies at z 3.1 discovered in deep narrowband MUSYC imaging of the Extended Chandra Deep Field-South. LAEs were selected to have observed frame equivalent widths >80 A and emission line fluxes >1.5 × 10-17 ergs cm-2 s-1. Only 1% of our LAE sample appears to host AGNs. The LAEs exhibit a moderate spatial correlation length of r0 = 3.6 Mpc, corresponding to a bias factor b = 1.7, which implies median dark matter halo masses of log10 Mmed = 10.9 M☉. Comparing the number density of LAEs, 1.5 ± 0.3 × 10-3 Mpc-3, with the number density of these halos finds a mean halo occupation ~1%-10%. The evolution of galaxy bias with redshift implies that most z = 3.1 LAEs evolve into present-day galaxies with L 3 galaxy populations typically evolve into more massive galaxies. Halo merger trees show that z = 0 descendants occupy halos with a wide range of masses, with a median descendant mass close to that of L*. Only 30% of LAEs have sufficient stellar mass (>~3 × 109 M☉) to yield detections in deep Spitzer IRAC imaging. A two-population SED fit to the stacked UBVRIzJK+[3.6, 4.5, 5.6, 8.0] μm fluxes of the IRAC-undetected objects finds that the typical LAE has low stellar mass (1.0 × 109 M☉), moderate star formation rate (2 ± 1 M☉ yr-1), a young component age of 20 Myr, and little dust (AV < 0.2). The best-fit model has 20% of the mass in the young stellar component, but models without evolved stars are also allowed.

367 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented a candidate for the most distant galaxy known to date with a photometric redshift of z = 10.7$^{+0.4}$ (95% confidence limits; with z {lt} 9.2-1.2{$σ$}).
Abstract: We present a candidate for the most distant galaxy known to date with a photometric redshift of z = 10.7$^{+0.6}$ $_{-0.4}$ (95% confidence limits; with z {lt} 9.5 galaxies of known types ruled out at 7.2{$σ$}). This J-dropout Lyman break galaxy, named MACS0647-JD, was discovered as part of the Cluster Lensing and Supernova survey with Hubble (CLASH). We observe three magnified images of this galaxy due to strong gravitational lensing by the galaxy cluster MACSJ0647.7+7015 at z = 0.591. The images are magnified by factors of ~{}80, 7, and 2, with the brighter two observed at ~{}26th magnitude AB (~{}0.15 {$μ$}Jy) in the WFC3/IR F160W filter (~{}1.4-1.7 {$μ$}m) where they are detected at gsim12{$σ$}. All three images are also confidently detected at gsim6{$σ$} in F140W (~{}1.2-1.6 {$μ$}m), dropping out of detection from 15 lower wavelength Hubble Space Telescope filters (~{}0.2-1.4 {$μ$}m), and lacking bright detections in Spitzer/IRAC 3.6 {$μ$}m and 4.5 {$μ$}m imaging (~{}3.2-5.0 {$μ$}m). We rule out a broad range of possible lower redshift interlopers, including some previously published as high-redshift candidates. Our high-redshift conclusion is more conservative than if we had neglected a Bayesian photometric redshift prior. Given CLASH observations of 17 high-mass clusters to date, our discoveries of MACS0647-JD at z ~{} 10.8 and MACS1149-JD at z ~{} 9.6 are consistent with a lensed luminosity function extrapolated from lower redshifts. This would suggest that low-luminosity galaxies could have reionized the universe. However, given the significant uncertainties based on only two galaxies, we cannot yet rule out the sharp drop-off in number counts at z {gt}~{} 10 suggested by field searches.

365 citations


Authors

Showing all 3617 results

NameH-indexPapersCitations
Robert C. Nichol187851162994
Richard S. Ellis169882136011
Rob Ivison1661161102314
Alvio Renzini16290895452
Timothy C. Beers156934102581
Krzysztof M. Gorski132380105912
Emanuele Daddi12958163187
P. R. Christensen12731388445
Mark Dickinson12438966770
Christopher W. Stubbs122622109429
Eva K. Grebel11886383915
Martin Asplund11861252527
Jesper Sollerman11872653436
E. F. van Dishoeck11574249190
Jørgen Christensen-Dalsgaard11458548272
Network Information
Related Institutions (5)
INAF
30.8K papers, 1.2M citations

98% related

Space Telescope Science Institute
14.1K papers, 947.2K citations

96% related

National Radio Astronomy Observatory
8.1K papers, 431.1K citations

95% related

Kapteyn Astronomical Institute
3.5K papers, 180.9K citations

95% related

Institut d'Astrophysique de Paris
7.6K papers, 491.5K citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202231
2021557
2020920
2019759
2018941