scispace - formally typeset
Search or ask a question
Institution

European Southern Observatory

FacilityGarching bei München, Germany
About: European Southern Observatory is a facility organization based out in Garching bei München, Germany. It is known for research contribution in the topics: Galaxy & Stars. The organization has 3594 authors who have published 16157 publications receiving 823095 citations. The organization is also known as: The European Southern Observatory,ESO & ESO.
Topics: Galaxy, Stars, Star formation, Redshift, Population


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors derived the structure of the Galactic stellar warp and flare and showed that the stellar warp starts already within the solar circle, and the derived stellar warp is consistent with that for the Galactic interstellar dust and neutral atomic hydrogen.
Abstract: Aims. In this paper we derive the structure of the Galactic stellar warp and flare. Methods. We use 2MASS red clump and red giant stars, selected at mean and fixed heliocentric distances of R ⊙ ≃ 3, 7 and 17 kpc. Results. Our results can be summarized as follows: (i) a clear stellar warp signature is derived for the 3 selected rings, proving that the warp starts already within the solar circle; (ii) the derived stellar warp is consistent (both in amplitude and phase-angle) with that for the Galactic interstellar dust and neutral atomic hydrogen; (iii) the consistency and regularity of the stellar-gaseous warp is traced out to about R GC ∼ 20 kpc; (iv) the Sun seems not to fall on the line of nodes. The stellar warp phase-angle orientation (Φ ∼ 15°) is close to the orientation angle of the Galactic bar and this, most importantly, produces an asymmetric warp for the inner R ⊙ ≃ 3 and 7 kpc rings; (v) a Northern/Southern warp symmetry is observed only for the ring at R⊙ ≃ 17 kpc, at which the dependency on if> is weakened; (vi) treating a mixture of thin and thick disk stellar populations, we trace the variation with R GC of the disk thickness (flaring) and derive an almost constant scale-height (∼0.65 kpc) within R GC ∼ 15 kpc. Further out, the disk flaring increase gradually reaching a mean scale-height of ∼1.5 kpc at R GC ∼ 23 kpc; (vii) the derived outer disk warping and flaring provide further robust evidence that there is no disk radial truncation at R GC ∼ 14 kpc. Conclusions. In the particular case of the Canis Major (CMa) over-density we confirm its coincidence with the Southern stellar maximum warp occurring near l ∼ 240° (for R ⊙ ≃ 7 kpc) which brings down the Milky Way mid-plane by ∼3° in this direction. The regularity and consistency of the stellar, gaseous and dust warp argues strongly against a recent merger scenario for Canis Major. We present evidence to conclude that all observed parameters (e.g. number density, radial velocities, proper motion etc) of CMa are consistent with it being a normal Milky Way outer-disk population, thereby leaving no justification for more complex interpretations of its origin. The present analysis or outer disk structure does not provide a conclusive test of the structure or origin of the Monoceros Ring. Nevertheless, we show that a warped flared Milky Way contributes significantly at the locations of the Monoceros Ring. Comparison of outer Milky Way HI and CO properties with those of other galaxies favors the suggestion that complex structures close to planar in outer disks are common, and are a natural aspect of warped and flaring disks.

346 citations

Journal ArticleDOI
Nabila Aghanim1, M. Arnaud2, M. Ashdown, J. Aumont1  +248 moreInstitutions (61)
TL;DR: In this article, the authors constructed all-sky Compton parameters maps, y-maps, of the thermal Sunyaev-Zeldovich (tSZ) effect by applying specifically tailored component separation algorithms to the 30 to 857 GHz frequency channel maps from the Planck satellite.
Abstract: We have constructed all-sky Compton parameters maps, y-maps, of the thermal Sunyaev-Zeldovich (tSZ) effect by applying specifically tailored component separation algorithms to the 30 to 857 GHz frequency channel maps from the Planck satellite These reconstructed y-maps are delivered as part of the Planck 2015 release The y-maps are characterized in terms of noise properties and residual foreground contamination, mainly thermal dust emission at large angular scales, and cosmic infrared background and extragalactic point sources at small angular scales Specific masks are defined to minimize foreground residuals and systematics Using these masks, we compute the y-map angular power spectrum and higher order statistics From these we conclude that the y-map is dominated by tSZ signal in the multipole range, 20

343 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a sample of 134 ultracool objects (spectral types later than M7) coming from the Deep Near Infrared Survey (DENIS), Two Micron All Sky Survey (2MASS), and Sloan digital sky survey (SDSS), with distances estimated to range from 7 to 105 pc.
Abstract: We present Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC2) observations of a sample of 134 ultracool objects (spectral types later than M7) coming from the Deep Near Infrared Survey (DENIS), Two Micron All Sky Survey (2MASS), and Sloan Digital Sky Survey (SDSS), with distances estimated to range from 7 to 105 pc. Fifteen new ultracool binary candidates are reported here. Eleven known binaries are confirmed, and orbital motion is detected in some of them. We estimate that the closest binary systems in this sample have periods between 5 and 20 yr, and thus dynamical masses will be derived in the near future. For the calculation of binary frequency, we restrict ourselves to systems with distances less than 20 pc. After correction of the binaries bias, we find a ratio of visual binaries (at the HST limit of detection) of around 10%, and that ~15% of the 26 objects within 20 pc are binary systems with separations between 1 and 8 AU. The observed frequency of ultracool binaries is similar to that of binaries with G-type primaries in the separation range from 2.1 to 140 AU. There is also a clear deficit of ultracool binaries with separations greater than 15 AU, and a possible tendency for the binaries to have mass ratios near unity. Most systems have indeed visual and near-infrared brightness ratios between 1 and 0.3. We discuss our results in the framework of current scenarios for the formation and evolution of free-floating brown dwarfs.

343 citations

Journal ArticleDOI
TL;DR: In this article, the impact of small sample statistics on detection thresholds and corresponding confidence levels (CLs) in high-contrast imaging at small angles is reviewed. But the authors do not consider the effect of small angles on the detection threshold.
Abstract: In this paper, we review the impact of small sample statistics on detection thresholds and corresponding confidence levels (CLs) in high-contrast imaging at small angles. When looking close to the star, the number of resolution elements decreases rapidly toward small angles. This reduction of the number of degrees of freedom dramatically affects CLs and false alarm probabilities. Naively using the same ideal hypothesis and methods as for larger separations, which are well understood and commonly assume Gaussian noise, can yield up to one order of magnitude error in contrast estimations at fixed CL. The statistical penalty exponentially increases toward very small inner working angles. Even at 5-10 resolution elements from the star, false alarm probabilities can be significantly higher than expected. Here we present a rigorous statistical analysis that ensures robustness of the CL, but also imposes a substantial limitation on corresponding achievable detection limits (thus contrast) at small angles. This unavoidable fundamental statistical effect has a significant impact on current coronagraphic and future high-contrast imagers. Finally, the paper concludes with practical recommendations to account for small number statistics when computing the sensitivity to companions at small angles and when exploiting the results of direct imaging planet surveys.

342 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the Vista Variables in the Via Lactea (VVV) ESO public survey data to measure extinction values in the complete area of the Galactic bulge covered by the survey at high resolution.
Abstract: Context. The Milky Way bulge is the nearest galactic bulge and the most readily accessible laboratory for studies of stellar populations in spheroids based on individual stellar abundances and kinematics. These studies are challenged by the strongly variable and often large extinction on a small spatial scale. Aims. We use the Vista Variables in the Via Lactea (VVV) ESO public survey data to measure extinction values in the complete area of the Galactic bulge covered by the survey at high resolution. Methods. We derive reddening values using the method described in Paper I. This is based on measuring the mean (J − Ks) color of red clump giants in small subfields of 2 � × 2 � to 6 � × 6 � in the following bulge area: −10.3 ◦ ≤ b ≤ +5.1 ◦ and −10.0 ◦ ≤ l ≤ +10.4 ◦ . To determine the reddening values E(J − Ks) for each region, we measure the RC color and compare it to the (J − Ks) color of RC stars measured in Baade’s Window, for which we adopt E(B − V) = 0.55. This allows us to construct a reddening map sensitive to small-scale variations minimizing the problems arising from differential extinction. Results. The significant reddening variations are clearly observed on spatial scales as small as 2 � . We find good agreement between our extinction measurements and Schlegel maps in the outer bulge, but, as already stated in the literature the Schlegel maps are unreliable for regions within |b| < 6 ◦ . In the inner regions, we compare our results with maps derived from DENIS and Spitzer surveys. While we find good agreement with other studies in the corresponding overlapping regions, our extinction map is of higher quality owing to both its higher resolution and a more complete spatial coverage of the bulge. We investigate the importance of differential reddening and demonstrate the need for high spatial resolution extinction maps for detailed studies of bulge stellar populations and structure. Conclusions. We present the first extinction map covering uniformly ∼315 sq. deg. of the Milky Way bulge at high spatial resolution. We consider a 30 arcmin window at a latitude of b = −4 ◦ , which corresponds to a frequently studied low extinction window, the so-called Baade’s Window, and find that its AKs values can vary by up to 0.1 mag. Larger extinction variations are observed at lower Galactic latitudes. The extinction variations on scales of up to 2 � −6 � must be taken into account when analyzing the stellar populations of the Galactic bulge.

342 citations


Authors

Showing all 3617 results

NameH-indexPapersCitations
Robert C. Nichol187851162994
Richard S. Ellis169882136011
Rob Ivison1661161102314
Alvio Renzini16290895452
Timothy C. Beers156934102581
Krzysztof M. Gorski132380105912
Emanuele Daddi12958163187
P. R. Christensen12731388445
Mark Dickinson12438966770
Christopher W. Stubbs122622109429
Eva K. Grebel11886383915
Martin Asplund11861252527
Jesper Sollerman11872653436
E. F. van Dishoeck11574249190
Jørgen Christensen-Dalsgaard11458548272
Network Information
Related Institutions (5)
INAF
30.8K papers, 1.2M citations

98% related

Space Telescope Science Institute
14.1K papers, 947.2K citations

96% related

National Radio Astronomy Observatory
8.1K papers, 431.1K citations

95% related

Kapteyn Astronomical Institute
3.5K papers, 180.9K citations

95% related

Institut d'Astrophysique de Paris
7.6K papers, 491.5K citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202231
2021557
2020920
2019759
2018941