scispace - formally typeset
Search or ask a question
Institution

European Southern Observatory

FacilityGarching bei München, Germany
About: European Southern Observatory is a facility organization based out in Garching bei München, Germany. It is known for research contribution in the topics: Galaxy & Stars. The organization has 3594 authors who have published 16157 publications receiving 823095 citations. The organization is also known as: The European Southern Observatory,ESO & ESO.
Topics: Galaxy, Stars, Star formation, Redshift, Population


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a detailed spectroscopic analysis of 72 evolved stars, including the [Fe/H] determination for the whole sample, was presented, together with the Teff values and the absolute V magnitude derived from Hipparcos parallaxes, were used to estimate basic stellar parameters (ages, masses, radii, (B-V)o and log g) using theoretical isochrones and a Bayesian estimation method.
Abstract: We present the detailed spectroscopic analysis of 72 evolved stars, including the [Fe/H] determination for the whole sample. These metallicities, together with the Teff values and the absolute V magnitude derived from Hipparcos parallaxes, are used to estimate basic stellar parameters (ages, masses, radii, (B-V)o and log g using theoretical isochrones and a Bayesian estimation method. The (B-V)o values so estimated turn out to be in excellent agreement with the observed (B-V), confirming the reliability of the (Teff,(B-V)o) relation used in the isochrones. The estimated diameters have been compared with limb darkening-corrected ones measured with independent methods, finding an agreement better than 0.3 mas within the 1-10 mas interval. We derive the age-metallicity relation for the solar neighborhood; for the first time such a relation has been derived from observations of field giants rather than from open clusters and field dwarfs and subdwarfs. The age-metallicity relation is characterized by close-to-solar metallicities for stars younger than ~4 Gyr, and by a large [Fe/H] spread with a trend towards lower metallicities for higher ages. We find that the [Fe/H] dispersion of young stars (less than 1 Gyr) is comparable to the observational errors, indicating that stars in the solar neighbourhood are formed from interstellar matter of quite homogeneous chemical composition. The three giants of our sample which have been proposed to host planets are not metal rich, what is at odds with those for main sequence stars. However, two of these stars have masses much larger than a solar mass so we may be sampling a different stellar population from most radial velocity searches for extrasolar planets. We also confirm that the radial velocity variability tends to increase along the RGB.

325 citations

Journal ArticleDOI
TL;DR: In this paper, the diversity of V-band light-curves of hydrogen-rich type II supernovae was analyzed and a relation between the decline rate during the 'plateau' phase and peak magnitudes was found, which has a dispersion of 0.56 mag.
Abstract: We present an analysis of the diversity of V-band light-curves of hydrogen-rich type II supernovae. Analyzing a sample of 116 supernovae, several magnitude measurements are defined, together with decline rates at different epochs, and time durations of different phases. It is found that magnitudes measured at maximum light correlate more strongly with decline rates than those measured at other epochs: brighter supernovae at maximum generally have faster declining light-curves at all epochs. We find a relation between the decline rate during the 'plateau' phase and peak magnitudes, which has a dispersion of 0.56 mag, offering the prospect of using type II supernovae as purely photometric distance indicators. Our analysis suggests that the type II population spans a continuum from low-luminosity events which have flat light-curves during the 'plateau' stage, through to the brightest events which decline much faster. A large range in optically thick phase durations is observed, implying a range in progenitor envelope masses at the epoch of explosion. During the radioactive tails, we find many supernovae with faster declining light-curves than expected from full trapping of radioactive emission, implying low mass ejecta. It is suggested that the main driver of light-curve diversity is the extent of hydrogen envelopesmore » retained before explosion. Finally, a new classification scheme is introduced where hydrogen-rich events are typed as simply 'SN II' with an 's {sub 2}' value giving the decline rate during the 'plateau' phase, indicating its morphological type.« less

324 citations

Journal ArticleDOI
TL;DR: In this paper, a Gaussian representation of the globular cluster luminosity function (GCLF) for 89 galaxies was obtained, and the luminosity functions were fit with an evolved Schechter function, which is meant to reflect the preferential depletion of low-mass GCs, primarily by evaporation due to two-body relaxation.
Abstract: We analyze the luminosity function of the globular clusters (GCs) belonging to the early-type galaxies observed in the ACS Virgo Cluster Survey. We have obtained maximum likelihood estimates for a Gaussian representation of the globular cluster luminosity function (GCLF) for 89 galaxies. We have also fit the luminosity functions with an evolved Schechter function, which is meant to reflect the preferential depletion of low-mass GCs, primarily by evaporation due to two-body relaxation, from an initial Schechter mass function similar to that of young massive clusters in local starbursts and mergers. We find a highly significant trend of the GCLF dispersion σ with galaxy luminosity, in the sense that the GC systems in smaller galaxies have narrower luminosity functions. The GCLF dispersions of our Galaxy and M31 are quantitatively in keeping with this trend, and thus the correlation between σ and galaxy luminosity would seem more fundamental than older notions that the GCLF dispersion depends on Hubble type. We show that this narrowing of the GCLF in a Gaussian description is driven by a steepening of the cluster mass function above the classic turnover mass, as one moves to lower luminosity host galaxies. In a Schechter function description, this is reflected by a steady decrease in the value of the exponential cutoff mass scale. We argue that this behavior at the high-mass end of the GC mass function is most likely a consequence of systematic variations of the initial cluster mass function rather than long-term dynamical evolution. The GCLF turnover mass MTO is roughly constant, at MTO (2.2 ± 0.4) × 105 M☉ in bright galaxies, but it decreases slightly (by ~35% on average, with significant scatter) in dwarf galaxies with MB,gal -18. It could be important to allow for this effect when using the GCLF as a distance indicator. We show that part, although perhaps not all, of the variation could arise from the shorter dynamical friction timescales in less massive galaxies. We probe the variation of the GCLF to projected galactocentric radii of 20-35 kpc in the Virgo giants M49 and M87, finding that the turnover point is essentially constant over these spatial scales. Our fits of evolved Schechter functions imply average dynamical mass losses (Δ) over a Hubble time that vary more than MTO, and systematically but nonmonotonically as a function of galaxy luminosity. If the initial GC mass distributions rose steeply toward low masses as we assume, then these losses fall in the range 2 × 105 M☉ Δ < 106 M☉ per GC for all of our galaxies. The trends in Δ are broadly consistent with observed, small variations of the mean GC half-light radius in ACSVCS galaxies, and with rough estimates of the expected scaling of average evaporation rates (galaxy densities) versus total luminosity. We agree with previous suggestions that if the full GCLF is to be understood in more detail, especially alongside other properties of GC systems, the next generation of GCLF models will have to include self-consistent treatments of dynamical evolution inside time-dependent galaxy potentials.

324 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed two-dimensional stellar dynamical analysis of a sample of 44 cosmological hydrodynamical simulations of individual central galaxies with stellar masses of 2 × 1010 M⊙ ≲ M* ≲ 6 × 1011 M ⊙ is presented.
Abstract: We present a detailed two-dimensional stellar dynamical analysis of a sample of 44 cosmological hydrodynamical simulations of individual central galaxies with stellar masses of 2 × 1010 M⊙ ≲ M* ≲ 6 × 1011 M⊙. Kinematic maps of the stellar line-of-sight velocity, velocity dispersion and higher order Gauss-Hermite moments h3 and h4 are constructed for each central galaxy and for the most massive satellites. The amount of rotation is quantified using the λR-parameter. The velocity, velocity dispersion, h3 and h4 fields of the simulated galaxies show a diversity similar to observed kinematic maps of early-type galaxies in the ATLAS3D survey. This includes fast (regular), slow and misaligned rotation, hot spheroids with embedded cold disc components as well as galaxies with counter-rotating cores or central depressions in the velocity dispersion. We link the present-day kinematic properties to the individual cosmological formation histories of the galaxies. In general, major galaxy mergers have a significant influence on the rotation properties resulting in both a spin-down as well as a spin-up of the merger remnant. Lower mass galaxies with significant (≳18 per cent) in situ formation of stars since z ≈ 2, or with additional gas-rich major mergers - resulting in a spin-up - in their formation history, form elongated (ɛ ˜ 0.45) fast rotators (λR ˜ 0.46) with a clear anticorrelation of h3 and v/σ. An additional formation path for fast rotators includes gas-poor major mergers leading to a spin-up of the remnants (λR ˜ 0.43). This formation path does not result in anticorrelated h3 and v/σ. The formation histories of slow rotators can include late major mergers. If the merger is gas rich, the remnant typically is a less flattened slow rotator with a central dip in the velocity dispersion. If the merger is gas poor, the remnant is very elongated (ɛ ˜ 0.43) and slowly rotating (λR ˜ 0.11). The galaxies most consistent with the rare class of non-rotating round early-type galaxies grow by gas-poor minor mergers alone. In general, more massive galaxies have less in situ star formation since z ˜ 2, rotate slower and have older stellar populations. We discuss general implications for the formation of fast and slowly rotating galaxies as well as the weaknesses and strengths of the underlying models.

324 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported new VLT/NACO imaging observations of the young, nearby brown dwarf 2MASSW (J1207334-393254) and its suggested planetary mass companion (2M1207b).
Abstract: We report new VLT/NACO imaging observations of the young, nearby brown dwarf 2MASSW J1207334-393254 and its suggested planetary mass companion (2M1207 b). Three epochs of VLT/NACO measurements obtained over nearly one year show that the planetary mass companion candidate shares the same proper motion and, with a high confidence level, is not a stationary background object. This result confirms the status of 2M1207 b as of planetary mass (5 times the mass of Jupiter) and the first image of a planetary mass companion in a different system than our own. This discovery offers new perspectives for our understanding of chemical and physical properties of planetary mass objects as well as their mechanisms of formation.

323 citations


Authors

Showing all 3617 results

NameH-indexPapersCitations
Robert C. Nichol187851162994
Richard S. Ellis169882136011
Rob Ivison1661161102314
Alvio Renzini16290895452
Timothy C. Beers156934102581
Krzysztof M. Gorski132380105912
Emanuele Daddi12958163187
P. R. Christensen12731388445
Mark Dickinson12438966770
Christopher W. Stubbs122622109429
Eva K. Grebel11886383915
Martin Asplund11861252527
Jesper Sollerman11872653436
E. F. van Dishoeck11574249190
Jørgen Christensen-Dalsgaard11458548272
Network Information
Related Institutions (5)
INAF
30.8K papers, 1.2M citations

98% related

Space Telescope Science Institute
14.1K papers, 947.2K citations

96% related

National Radio Astronomy Observatory
8.1K papers, 431.1K citations

95% related

Kapteyn Astronomical Institute
3.5K papers, 180.9K citations

95% related

Institut d'Astrophysique de Paris
7.6K papers, 491.5K citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202231
2021557
2020920
2019759
2018941