scispace - formally typeset
Search or ask a question
Institution

European Southern Observatory

FacilityGarching bei München, Germany
About: European Southern Observatory is a facility organization based out in Garching bei München, Germany. It is known for research contribution in the topics: Galaxy & Stars. The organization has 3594 authors who have published 16157 publications receiving 823095 citations. The organization is also known as: The European Southern Observatory,ESO & ESO.
Topics: Galaxy, Stars, Star formation, Redshift, Population


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigated the CO excitation of normal (near-IR selected BzK) disk galaxies at z = 1.5 using IRAM Plateau de Bure observations of the CO[2-1], CO[3-2], and CO[5-4] transitions for four galaxies, including VLA observations of CO[1-0] for three of them, with the aim of constraining the average state of H2 gas.
Abstract: We investigate the CO excitation of normal (near-IR selected BzK) star-forming (SF) disk galaxies at z = 1.5 using IRAM Plateau de Bure observations of the CO[2-1], CO[3-2], and CO[5-4] transitions for four galaxies, including VLA observations of CO[1-0] for three of them, with the aim of constraining the average state of H2 gas. By exploiting previous knowledge of the velocity range, spatial extent, and size of the CO emission, we measure reliable line fluxes with a signal-to-noise ratio >4-7 for individual transitions. While the average CO spectral line energy distribution (SLED) has a subthermal excitation similar to the Milky Way (MW) up to CO[3-2], we show that the average CO[5-4] emission is four times stronger than assuming MW excitation. This demonstrates that there is an additional component of more excited, denser, and possibly warmer molecular gas. The ratio of CO[5-4] to lower-J CO emission is lower than in local (ultra-)luminous infrared galaxies (ULIRGs) and high-redshift starbursting submillimeter galaxies, however, and appears to be closely correlated with the average intensity of the radiation field and with the star formation surface density, but not with the star formation efficiency. The luminosity of the CO[5-4] transition is found to be linearly correlated with the bolometric infrared luminosity over four orders of magnitudes. For this transition, z = 1.5 BzK galaxies follow the same linear trend as local spirals and (U)LIRGs and high-redshift star-bursting submillimeter galaxies. The CO[5-4] luminosity is thus empirically related to the dense gas and might be a more convenient way to probe it than standard high-density tracers that are much fainter than CO. We see excitation variations among our sample galaxies that can be linked to their evolutionary state and clumpiness in optical rest-frame images. In one galaxy we see spatially resolved excitation variations, where the more highly excited part of the galaxy corresponds to the location of massive SF clumps. This provides support to models that suggest that giant clumps are the main source of the high-excitation CO emission in high-redshift disk-like galaxies. © ESO, 2015.

262 citations

Journal ArticleDOI
10 Apr 2015-Science
TL;DR: The authors' atmospheric maps indicate that water ice in the polar reservoirs is enriched in deuterium to at least 8 VSMOW, which would mean that early Mars had a global equivalent water layer at least 137 meters deep.
Abstract: We measured maps of atmospheric water (H2O) and its deuterated form (HDO) across the martian globe, showing strong isotopic anomalies and a significant high deuterium/hydrogen (D/H) enrichment indicative of great water loss. The maps sample the evolution of sublimation from the north polar cap, revealing that the released water has a representative D/H value enriched by a factor of about 7 relative to Earth's ocean [Vienna standard mean ocean water (VSMOW)]. Certain basins and orographic depressions show even higher enrichment, whereas high-altitude regions show much lower values (1 to 3 VSMOW). Our atmospheric maps indicate that water ice in the polar reservoirs is enriched in deuterium to at least 8 VSMOW, which would mean that early Mars (4.5 billion years ago) had a global equivalent water layer at least 137 meters deep.

262 citations

Journal ArticleDOI
12 Aug 2011-Science
TL;DR: It is shown that the velocity structure of absorbing material along the line of sight to 35 type Ia supernovae tends to be blueshifted, and these structures are likely signatures of gas outflows from the supernova progenitor systems.
Abstract: Type Ia supernovae are key tools for measuring distances on a cosmic scale. They are generally thought to be the thermonuclear explosion of an accreting white dwarf in a close binary system. The nature of the mass donor is still uncertain. In the single-degenerate model it is a main-sequence star or an evolved star, whereas in the double-degenerate model it is another white dwarf. We show that the velocity structure of absorbing material along the line of sight to 35 type Ia supernovae tends to be blueshifted. These structures are likely signatures of gas outflows from the supernova progenitor systems. Thus, many type Ia supernovae in nearby spiral galaxies may originate in single-degenerate systems.

261 citations

Journal ArticleDOI
TL;DR: The K20 survey as mentioned in this paper is the most complete near infrared-selected, deep (Ks < 20) redshift survey targeting galaxies in two independent regions of the sky, the Chandra Deep Field South and the field around the quasar.
Abstract: The K20 survey is a near infrared-selected, deep (Ks < 20) redshift survey targeting galaxies in two independent regions of the sky, the Chandra Deep Field South and the field around the quasar 0055−2659, for a total area of 52 arcmin 2 . The total Ks-selected sample includes 545 objects. Low-resolution (R ≈ 300−600) optical spectra for 525 of them have been obtained with the FORS1/FORS2 spectrographs at the ESO/VLT, providing 501 spectroscopic identifications (including 12 type-1 AGN and 45 stars); consequently, we were able to measure redshifts and identify stars in 96% of the observed objects, whereas the spectroscopic completeness with respect to the total photometrically selected sample is 92% (501/545). The K20 survey is therefore the most complete spectroscopic survey of a near infrared-selected sample to date. The K20 survey contains 444 spectroscopically identified galaxies, covering a redshift range of 0.05 < z < 2.73, with a mean redshiftz� = 0.75; exclud- ing the 32 "low-quality" redshifts does not significantly change these values. This paper describes the final K20 spectroscopic catalogue, along with the technique used to determine redshifts, measure the spectral features and characterize the spectra. The classification of the galaxy spectra has been performed according to a simple parametric recipe that uses the equivalent widths of the two main emission lines ((OII)λ3727 and Hα+(NII)) and two continuum indices (the 4000 A break index, D4000, and a near-UV color index, C(28-39)). We defined three main spectroscopic classes: red early-type galaxies, blue emission-line galaxies and the intermediate galaxies, which show emission lines but a red continuum. More than 95% of the examined galax- ies is included in one of these spectral types and a composite spectrum is built for each of the three galaxy classes. The full spectroscopic catalogue, the reduced individual spectra and the composite spectra are released to the community through the K20 web page (http://www.arcetri.astro.it/∼k20/). The blue emission-line and the early-type galaxies have been divided in redshift bins, and the corresponding composite spectra have been built, in order to investigate the evolution of the spectral properties of the K20 galaxies with redshift. The early-type average spectra are remarkable in their similarity, showing only subtle but systematic differences in the D4000 index, which are consistent with the ageing of the stellar population. Conversely, the star-forming galaxies present a significant "blueing" of the optical/near-UV continuum with redshift, although the (OII) equivalent width remains constant (∼33 A) in the same redshift intervals. We reproduce the observed properties with simple, dust-free population synthesis models, suggesting that the high- redshift galaxies are younger and more active than those detected at lower redshift, whilst the equivalent width of the emission lines apparently require a lower metallicity for the low-redshift objects. This may be consistent with the metallicity-luminosity relationship locally observed for star-forming galaxies.

261 citations

Journal ArticleDOI
TL;DR: In this paper, the most distant type 2 active galactic nucleus was detected, at redshift 3.700 ± 0.005, which is the source with the hardest X-ray spectrum with redshift z > 3.
Abstract: In the Chandra Deep Field-South 1 Ms exposure, we have found, at redshift 3.700 ± 0.005, the most distant type 2 active galactic nucleus ever detected. It is the source with the hardest X-ray spectrum with redshift z > 3. The optical spectrum has no detected continuum emission to a 3 σ detection limit of ~3 × 10-19 ergs s-1 cm-2 A-1 and shows narrow lines of Lyα, C IV, N V, He II, O VI, [O III], and C III]. Their FWHM line widths have a range of ~700-2300 km s-1 with an average of approximately ~1500 km s-1. The emitting gas is metal-rich (Z 2.5-3 Z☉). In the X-ray spectrum of 130 counts in the 0.5-7 keV band, there is evidence for intrinsic absorption with NH 1024 cm-2. An iron Kα line with rest-frame energy and equivalent width of ~6.4 keV and ~1 keV, respectively, in agreement with the obscuration scenario, is detected at a 2 σ level. If confirmed by our forthcoming XMM-Newton observations, this would be the highest redshift detection of Fe Kα. Depending on the assumed cosmology and the X-ray transfer model, the 2-10 keV rest frame luminosity corrected for absorption is ~1045 ± 0.5 ergs cm-2 s-1, which makes our source a classic example of the long-sought type 2 QSO. From standard population synthesis models, these sources are expected to account for a relevant fraction of the black hole-powered QSO distribution at high redshift.

260 citations


Authors

Showing all 3617 results

NameH-indexPapersCitations
Robert C. Nichol187851162994
Richard S. Ellis169882136011
Rob Ivison1661161102314
Alvio Renzini16290895452
Timothy C. Beers156934102581
Krzysztof M. Gorski132380105912
Emanuele Daddi12958163187
P. R. Christensen12731388445
Mark Dickinson12438966770
Christopher W. Stubbs122622109429
Eva K. Grebel11886383915
Martin Asplund11861252527
Jesper Sollerman11872653436
E. F. van Dishoeck11574249190
Jørgen Christensen-Dalsgaard11458548272
Network Information
Related Institutions (5)
INAF
30.8K papers, 1.2M citations

98% related

Space Telescope Science Institute
14.1K papers, 947.2K citations

96% related

National Radio Astronomy Observatory
8.1K papers, 431.1K citations

95% related

Kapteyn Astronomical Institute
3.5K papers, 180.9K citations

95% related

Institut d'Astrophysique de Paris
7.6K papers, 491.5K citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202231
2021557
2020920
2019759
2018941