scispace - formally typeset
Search or ask a question
Institution

European Space Operations Centre

GovernmentDarmstadt, Germany
About: European Space Operations Centre is a government organization based out in Darmstadt, Germany. It is known for research contribution in the topics: Orbit determination & Space debris. The organization has 309 authors who have published 331 publications receiving 10399 citations. The organization is also known as: ESOC.


Papers
More filters
Journal ArticleDOI
TL;DR: Gaia as discussed by the authors is a cornerstone mission in the science programme of the European Space Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach.
Abstract: Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We pay special attention to the payload module, the performance of which is closely related to the scientific performance of the mission. We provide a summary of the commissioning activities and findings, followed by a description of the routine operational mode. We summarise scientific performance estimates on the basis of in-orbit operations. Several intermediate Gaia data releases are planned and the data can be retrieved from the Gaia Archive, which is available through the Gaia home page.

5,164 citations

Journal ArticleDOI
TL;DR: The status and tracking capabilities of the IGS monitoring station network are presented and the multi-GNSS products derived from this resource are discussed and the achieved performance is assessed and related to the current level of space segment and user equipment characterization.

645 citations

Journal ArticleDOI
Michele Armano1, Heather Audley2, G. Auger3, J. Baird4, Massimo Bassan5, Pierre Binétruy3, M. Born2, Daniele Bortoluzzi6, N. Brandt7, M. Caleno1, L. Carbone6, Antonella Cavalleri8, A. Cesarini6, Giacomo Ciani6, G. Congedo6, A. M. Cruise9, Karsten Danzmann2, M. de Deus Silva1, R. De Rosa, M. Diaz-Aguilo10, L. Di Fiore, Ingo Diepholz2, G. Dixon9, Rita Dolesi6, N. Dunbar7, Luigi Ferraioli11, Valerio Ferroni6, Walter Fichter, E. D. Fitzsimons12, R. Flatscher7, M. Freschi1, A. F. García Marín2, C. García Marirrodriga1, R. Gerndt7, Lluis Gesa10, Ferran Gibert6, Domenico Giardini11, R. Giusteri6, F. Guzmán2, Aniello Grado13, Catia Grimani14, A. Grynagier, J. Grzymisch1, I. Harrison15, Gerhard Heinzel2, M. Hewitson2, Daniel Hollington4, D. Hoyland9, Mauro Hueller6, Henri Inchauspe3, Oliver Jennrich1, Ph. Jetzer16, Ulrich Johann7, B. Johlander1, Nikolaos Karnesis2, B. Kaune2, N. Korsakova2, Christian J. Killow17, J. A. Lobo10, Ivan Lloro10, L. Liu6, J. P. López-Zaragoza10, R. Maarschalkerweerd15, Davor Mance11, V. Martín10, L. Martin-Polo1, J. Martino3, F. Martin-Porqueras1, S. Madden1, Ignacio Mateos10, Paul McNamara1, José F. F. Mendes15, L. Mendes1, A. Monsky2, Daniele Nicolodi6, Miquel Nofrarías10, S. Paczkowski2, Michael Perreur-Lloyd17, Antoine Petiteau3, P. Pivato6, Eric Plagnol3, P. Prat3, U. Ragnit1, B. Rais3, Juan Ramos-Castro18, J. Reiche2, D. I. Robertson17, H. Rozemeijer1, F. Rivas10, G. Russano6, J Sanjuán10, P. Sarra, A. Schleicher7, D. Shaul4, Jacob Slutsky19, Carlos F. Sopuerta10, Ruggero Stanga20, F. Steier2, T. J. Sumner4, D. Texier1, James Ira Thorpe19, C. Trenkel7, Michael Tröbs2, H. B. Tu6, Daniele Vetrugno6, Stefano Vitale6, V Wand2, Gudrun Wanner2, H. Ward17, C. Warren7, Peter Wass4, D. Wealthy7, W. J. Weber6, L. Wissel2, A. Wittchen2, A. Zambotti6, C. Zanoni6, Tobias Ziegler7, Peter Zweifel11 
TL;DR: The first results of the LISA Pathfinder in-flight experiment demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density.
Abstract: We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2 +/- 0.1 fm s(exp -2)/square root of Hz, or (0.54 +/- 0.01) x 10(exp -15) g/square root of Hz, with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8 +/- 0.3) fm square root of Hz, about 2 orders of magnitude better than requirements. At f less than or equal to 0.5 mHz we observe a low-frequency tail that stays below 12 fm s(exp -2)/square root of Hz down to 0.1 mHz. This performance would allow for a space-based gravitational wave observatory with a sensitivity close to what was originally foreseen for LISA.

523 citations

Journal ArticleDOI
TL;DR: The working groups and pilot projects of the IGS demonstrate IGS involvement in applications related to the precise global reference frame, timing, ionosphere, atmospheric water vapour, low Earth orbiter precise orbit determination, sea level change measurements, real-time GPS applications, and GNSS developments.

314 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the operational method of deriving cloud-motion winds from the IR image (10.5–12.5 µm) of the European geostationary Meteostat satellites.
Abstract: The displacement of clouds in successive satellite images reflects the atmospheric circulation at various scales. The main application of the satellite-derived cloud-motion vectors is their use as winds in the data analysis for numerical weather prediction. At low latitudes in particular they constitute an indispensible data source for numerical weather prediction. This paper describes the operational method of deriving cloud-motion winds (CMW) from the IR image (10.5–12.5 µm) of the European geostationary Meteostat satellites. The method is automatic, that is, the cloud tracking uses cross correlation and the height assignment is based on satellite observed brightness temperature and a forecast temperature profile. Semitransparent clouds undergo a height correction based on radiative forward calculations and simultaneous radiance observations in both the IR and water vapor (5.7–7.1 µm) channel. Cloud-motion winds are subject to various quality checks that include manual quality control as the la...

273 citations


Authors

Showing all 312 results

NameH-indexPapersCitations
S. Foley569610888
Anja Rudolph5313717307
José F. F. Mendes5125719604
Johannes Schmetz29853741
Markus Landgraf28862678
Heiner Klinkrad231201777
Ian Harrison22711664
Holger Krag191071081
Marcus Kirsch1643715
R. Maarschalkerweerd14411163
Nicola Policella1464865
Michiel Otten1327539
Jozef C. Van Der Ha1246368
R. Jehn1237387
Andrés Riaguas1014376
Network Information
Related Institutions (5)
European Space Agency
8.3K papers, 293.4K citations

79% related

German Aerospace Center
26.7K papers, 553.3K citations

78% related

Goddard Space Flight Center
63.3K papers, 2.7M citations

77% related

Jet Propulsion Laboratory
14.3K papers, 548.1K citations

77% related

National Institute for Space Research
11K papers, 285.4K citations

77% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
20226
20217
202010
201914
20189