scispace - formally typeset
Search or ask a question
Institution

ExxonMobil

CompanyIrving, Texas, United States
About: ExxonMobil is a company organization based out in Irving, Texas, United States. It is known for research contribution in the topics: Catalysis & Polymerization. The organization has 16969 authors who have published 23758 publications receiving 535713 citations. The organization is also known as: Exxon Mobil Corporation & Exxon Mobil Corp..
Topics: Catalysis, Polymerization, Polymer, Hydrocarbon, Alkyl


Papers
More filters
Book
31 Jan 1986
TL;DR: Numerical Recipes: The Art of Scientific Computing as discussed by the authors is a complete text and reference book on scientific computing with over 100 new routines (now well over 300 in all), plus upgraded versions of many of the original routines, with many new topics presented at the same accessible level.
Abstract: From the Publisher: This is the revised and greatly expanded Second Edition of the hugely popular Numerical Recipes: The Art of Scientific Computing. The product of a unique collaboration among four leading scientists in academic research and industry, Numerical Recipes is a complete text and reference book on scientific computing. In a self-contained manner it proceeds from mathematical and theoretical considerations to actual practical computer routines. With over 100 new routines (now well over 300 in all), plus upgraded versions of many of the original routines, this book is more than ever the most practical, comprehensive handbook of scientific computing available today. The book retains the informal, easy-to-read style that made the first edition so popular, with many new topics presented at the same accessible level. In addition, some sections of more advanced material have been introduced, set off in small type from the main body of the text. Numerical Recipes is an ideal textbook for scientists and engineers and an indispensable reference for anyone who works in scientific computing. Highlights of the new material include a new chapter on integral equations and inverse methods; multigrid methods for solving partial differential equations; improved random number routines; wavelet transforms; the statistical bootstrap method; a new chapter on "less-numerical" algorithms including compression coding and arbitrary precision arithmetic; band diagonal linear systems; linear algebra on sparse matrices; Cholesky and QR decomposition; calculation of numerical derivatives; Pade approximants, and rational Chebyshev approximation; new special functions; Monte Carlo integration in high-dimensional spaces; globally convergent methods for sets of nonlinear equations; an expanded chapter on fast Fourier methods; spectral analysis on unevenly sampled data; Savitzky-Golay smoothing filters; and two-dimensional Kolmogorov-Smirnoff tests. All this is in addition to material on such basic top

12,662 citations

MonographDOI
16 Dec 2004
TL;DR: The second edition of The Biomarker Guide as mentioned in this paper provides a comprehensive account of the role that biomarker technology plays both in petroleum exploration and in understanding Earth history and processes.
Abstract: The second edition of The Biomarker Guide is a fully updated and expanded version of this essential reference. Now in two volumes, it provides a comprehensive account of the role that biomarker technology plays both in petroleum exploration and in understanding Earth history and processes. Biomarkers and Isotopes in the Environment and Human History details the origins of biomarkers and introduces basic chemical principles relevant to their study. It discusses analytical techniques, and applications of biomarkers to environmental and archaeological problems. The Biomarker Guide is an invaluable resource for geologists, petroleum geochemists, biogeochemists, environmental scientists and archaeologists.

2,163 citations

Journal ArticleDOI
TL;DR: It is shown how various well-known asymptotic power laws in S(q) are obtained from the above theory, and the theory is compared with experimental results on x-ray scattering from a polished Pyrex glass surface.
Abstract: The scattering of x rays and neutrons from rough surfaces is calculated. It is split into specular reflection and diffuse scattering terms. These are calculated in the first Born approximation, and explicit expressions are given for surfaces whose roughness can be described as self-affine over finite length scales. Expressions are also given for scattering from liquid surfaces, where it is shown that ``specular'' reflections only exist by virtue of a finite length cutoff to the mean-square height fluctuations. Expressions are also given for the scattering from randomly oriented surfaces, as studied in a typical small-angle scattering experiment. It is shown how various well-known asymptotic power laws in S(q) are obtained from the above theory. The distorted-wave Born approximation is next used to treat the case where the scattering is large (e.g., near the critical angle for total external reflection), and its limits of validity are discussed. Finally, the theory is compared with experimental results on x-ray scattering from a polished Pyrex glass surface.

2,031 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the objectives of community efforts in improving the Noah land surface model (LSM), documents, through mathematical formulations, the augmented conceptual realism in biophysical and hydrological processes, and introduces a framework for multiple options to parameterize selected processes (Noah•MP).
Abstract: [1] This first paper of the two‐part series describes the objectives of the community efforts in improving the Noah land surface model (LSM), documents, through mathematical formulations, the augmented conceptual realism in biophysical and hydrological processes, and introduces a framework for multiple options to parameterize selected processes (Noah‐MP). The Noah‐MP’s performance is evaluated at various local sites using high temporal frequency data sets, and results show the advantages of using multiple optional schemes to interpret the differences in modeling simulations. The second paper focuses on ensemble evaluations with long‐term regional (basin) and global scale data sets. The enhanced conceptual realism includes (1) the vegetation canopy energy balance, (2) the layered snowpack, (3) frozen soil and infiltration, (4) soil moisture‐groundwater interaction and related runoff production, and (5) vegetation phenology. Sample local‐scale validations are conducted over the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) site, the W3 catchment of Sleepers River, Vermont, and a French snow observation site. Noah‐MP shows apparent improvements in reproducing surface fluxes, skin temperature over dry periods, snow water equivalent (SWE), snow depth, and runoff over Noah LSM version 3.0. Noah‐MP improves the SWE simulations due to more accurate simulations of the diurnal variations of the snow skin temperature, which is critical for computing available energy for melting. Noah‐MP also improves the simulation of runoff peaks and timing by introducing a more permeable frozen soil and more accurate simulation of snowmelt. We also demonstrate that Noah‐MP is an effective research tool by which modeling results for a given process can be interpreted through multiple optional parameterization schemes in the same model framework.

1,682 citations

Journal ArticleDOI
Gary S. Grest1, Kurt Kremer1
TL;DR: An efficient and general algorithm for simulating polymers, which can be used for single, large chains as well as many-chain systems, and confirmed two theoretical results, namely the anomalous behavior of S(q) for rings and the ${t}^{0.54}$ power law for the motion of a monomer in a self-avoiding chain undergoing Rouse relaxation.
Abstract: We describe an efficient and general algorithm for simulating polymers, which can be used for single, large chains as well as many-chain systems. It allows us to distinguish solvent effects from interchain effects on the dynamics of the chains. The method is tested for linear and cyclic chains of 50 to 200 monomers. We have confirmed two theoretical results which have not been observed numerically or experimentally, namely the anomalous behavior of S(q) for rings and the ${t}^{0.54}$ power law for the motion of a monomer in a self-avoiding chain undergoing Rouse relaxation.

1,548 citations


Authors

Showing all 16987 results

NameH-indexPapersCitations
Ronald R. Chance6418514135
Michael J. Therien6326313083
Ye Xu6236416859
Tewodros Asefa6222423741
Manoj K. Chaudhury6215316487
Graham N. George6229714059
Nitash P. Balsara6241115083
Joseph M. Suflita6216610428
Xiaodong Zou6136413933
Eleftherios N. Economou6135816818
Sow-Hsin Chen6129413793
Andrea J. Liu6123014092
Jeremy M Berg6138017509
Stephen P. Cramer6128411031
Cyrus R. Safinya6024214302
Network Information
Related Institutions (5)
Sandia National Laboratories
46.7K papers, 1.4M citations

84% related

Delft University of Technology
94.4K papers, 2.7M citations

84% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

83% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

82% related

Argonne National Laboratory
64.3K papers, 2.4M citations

82% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20234
202236
2021302
2020340
2019366
2018438