scispace - formally typeset
Search or ask a question
Institution

ExxonMobil

CompanyIrving, Texas, United States
About: ExxonMobil is a company organization based out in Irving, Texas, United States. It is known for research contribution in the topics: Catalysis & Polymerization. The organization has 16969 authors who have published 23758 publications receiving 535713 citations. The organization is also known as: Exxon Mobil Corporation & Exxon Mobil Corp..
Topics: Catalysis, Polymerization, Polymer, Hydrocarbon, Alkyl


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a multivariable multi-rate nonlinear model predictive control (NMPC) strategy is applied to styrene polymerization, which incorporates a multiview Extended Kalman Filter (EKF) to handle state variable and parameter estimation.

130 citations

Journal ArticleDOI
TL;DR: In this article, the authors used ultrasonic pulse transmission to measure compressional, P, and shear, S, wave speeds in laboratory-formed polycrystalline ice Ih, sI methane hydrate, and sII methane-ethane hydrate.
Abstract: [1] We used ultrasonic pulse transmission to measure compressional, P, and shear, S, wave speeds in laboratory-formed polycrystalline ice Ih, sI methane hydrate, and sII methane-ethane hydrate. From the wave speed's linear dependence on temperature and pressure and from the sample's calculated density, we derived expressions for bulk, shear, and compressional wave moduli and Poisson's ratio from −20 to −5°C and 22.4 to 32.8 MPa for ice Ih, −20 to 15°C and 30.5 to 97.7 MPa for sI methane hydrate, and −20 to 10°C and 30.5 to 91.6 MPa for sII methane-ethane hydrate. All three materials had comparable P and S wave speeds and decreasing shear wave speeds with increasing applied pressure. Each material also showed evidence of rapid intergranular bonding, with a corresponding increase in wave speed, in response to pauses in sample deformation. There were also key differences. Resistance to uniaxial compaction, indicated by the pressure required to compact initially porous samples, was significantly lower for ice Ih than for either hydrate. The ice Ih shear modulus decreased with increasing pressure, in contrast to the increase measured in both hydrates.

130 citations

Journal ArticleDOI
TL;DR: In this article, a generalization of the Differential Effective Medium Approximation (DEM) was proposed to the estimation of the effective permittivity of a two phase dielectric composite, and a canonical ordinary differential equation was derived which describes the change in material properties as a function of the volume concentration of the added phases in the composite.
Abstract: A generalization of the Differential Effective Medium approximation (DEM) is discussed. The new scheme is applied to the estimation of the effective permittivity of a two phase dielectric composite. Ordinary DEM corresponds to a realizable microgeometry in which the composite is built up incrementally through a process of homogenization, with one phase always in dilute suspension and the other phase associated with the percolating backbone. The generalization of DEM assumes a third phase which acts as a backbone. The other two phases are progressively added to the backbone such that each addition is in an effectively homogeneous medium. A canonical ordinary differential equation is derived which describes the change in material properties as a function of the volume concentration φ of the added phases in the composite. As φ→ 1, the Effective Medium Approximation (EMA) is obtained. For φ

130 citations

Journal ArticleDOI
TL;DR: In this paper, a methode de simulation permettant l'analyse de l'interaction entre les particules and les joints de grains, et de la relation entre la grosseur des grains and la fraction volumique des particules.

130 citations

Journal ArticleDOI
James G. Speight1, D. L. Wernick1, K. A. Gould1, R. E. Overfield1, B. M. L. Rao1 
TL;DR: In this article, a review of the methods used to estimate asphaltene molecular weights and to probe association phenomena is presented. But the authors do not discuss the mechanisms of the intermolecular association phenomena.
Abstract: The determination of asphaltene molecular weights is complicated by the tendency of asphaltene molecules to associate with each other and with other petroleum constituents, and reported molecular weights vary from 900 to 300 000. This paper reviews the methods (vapor pressure osmometry, size exclusion chromatography, ultrafiltration, ultracentrifugation, viscosity, small angle X-ray scattering, infrared spectroscopy, solubilization, and interfacial tension) that have been used to estimate asphaltene molecular weights and to probe association phenomena. It is concluded that asphaltene fractions from typical crudes have a number average molecular weight of 1 200-2 700 and a molecular weight range of 1,000-10,000 or higher. Intermolecular association phenomena are primarily responsible for observed molecular weights up to and in excess of 100,000 but detailed mechanisms of the intermolecular associations are not well understood. Certain observations suggest that asphaltene molecules are associated in reversedmicelles and that asphaltenes interact selectively with resins although the evidence on these points is subject to alternate interpretations. H-bond interactions between asphaltenes and resins have been demonstrated.

129 citations


Authors

Showing all 16987 results

NameH-indexPapersCitations
David A. Weitz1781038114182
Avelino Corma134104989095
Peter Hall132164085019
James A. Dumesic11861558935
Robert H. Crabtree11367848634
Costas M. Soukoulis10864450208
Nicholas J. Turro104113153827
Edwin L. Thomas10460640819
Israel E. Wachs10342732029
Andrew I. Cooper9938934700
Michael J. Zaworotko9751944441
Enrique Iglesia9641631934
Yves J. Chabal9451933820
George E. Gehrels9245430560
Ping Sheng9059337141
Network Information
Related Institutions (5)
Sandia National Laboratories
46.7K papers, 1.4M citations

84% related

Delft University of Technology
94.4K papers, 2.7M citations

84% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

83% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

82% related

Argonne National Laboratory
64.3K papers, 2.4M citations

82% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20234
202236
2021302
2020340
2019366
2018438