scispace - formally typeset
Search or ask a question
Institution

ExxonMobil

CompanyIrving, Texas, United States
About: ExxonMobil is a company organization based out in Irving, Texas, United States. It is known for research contribution in the topics: Catalysis & Polymer. The organization has 16969 authors who have published 23758 publications receiving 535713 citations. The organization is also known as: Exxon Mobil Corporation & Exxon Mobil Corp..
Topics: Catalysis, Polymer, Polymerization, Hydrocarbon, Alkyl


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a two-dimensional theory for the viscosity of foams and concentrated emulsions is presented, which considers viscous dissipation in the thin films between the bubbles as the system is subjected to a periodic uniaxial strain that does not exceed the elastic limit.

97 citations

Patent
18 Jun 1998
TL;DR: An ultra-high strength, weldable, low alloy steel with excellent cryogenic temperature toughness in the base plate and in the heat affected zone (HAZ) when welded, having a tensile strength greater than about 830 MPa (120 ksi) and a microstructure comprising (i) predominantly fine-grained lower bainite, finegrained lath martensite, or mixtures thereof, and (ii) up to about 10 vol % retained austenite, is prepared by heating a steel slab comprising iron and specified weight percentages of some or
Abstract: An ultra-high strength, weldable, low alloy steel with excellent cryogenic temperature toughness in the base plate and in the heat affected zone (HAZ) when welded, having a tensile strength greater than about 830 MPa (120 ksi) and a microstructure comprising (i) predominantly fine-grained lower bainite, fine-grained lath martensite, fine granular bainite (FGB), or mixtures thereof, and (ii) up to about 10 vol % retained austenite, is prepared by heating a steel slab comprising iron and specified weight percentages of some or all of the additives carbon, manganese, nickel, nitrogen, copper, chromium, molybdenum, silicon, niobium, vanadium, titanium, aluminum, and boron; reducing the slab to form plate in one or more passes in a temperature range in which austenite recrystallizes; finish rolling the plate in one or more passes in a temperature range below the austenite recrystallization temperature and above the Ar3 transformation temperature; quenching the finish rolled plate to a suitable Quench Stop Temperature (QST); stopping the quenching; and either, for a period of time, holding the plate substantially isothermally at the QST or slow-cooling the plate before air cooling, or simply air cooling the plate to ambient temperature.

97 citations

Journal ArticleDOI
TL;DR: In this article, thin film pyrolysis was used to thermally crack asphaltene molecules into their constituent building blocks at 500 °C and then the cracked products were rapidly released into a much colder sweep gas stream to quench the reactions and minimize further decomposition.
Abstract: Thin film pyrolysis was used to thermally crack asphaltene molecules into their constituent building blocks at 500 °C. By using a thin film of liquid of ca. 20 μm, the cracked products were rapidly released into a much colder sweep gas stream to quench the reactions and minimize further decomposition. The liquid products were condensed and collected, with over 91% material balance on the recovery of gas, liquid, and coke product. Simulated distillation of the condensed liquid products showed a wide range of compounds with boiling points up to more than 700 °C produced in various stages of the reaction. Less than 1% of the original mass of the asphaltenes was released in the form of light gases such as methane and ethane. The liquid components boiling below 538 °C comprised 15–20% of the initial asphaltenes, and contained a wide range of chemical structures including paraffins, olefins, naphthenes, aromatics, thiophenes and sulfides, and nitrogen-containing compounds, identified by gas chromatography–field...

97 citations

Journal ArticleDOI
TL;DR: The acidity of WO3 on γ-alumina is compared with that of ultrastable faujasite using both base adsorption techniques and model compound conversion studies.

96 citations

Journal ArticleDOI
TL;DR: The importance of considering gas-fired power plants alongside coal-fired plants in future analyses of carbon capture materials is emphasized, and specific challenges and opportunities related to adsorptive carbon capture from the emissions of gas- Fired plants are addressed.
Abstract: In recent years, the power sector has shown a growing reliance on natural gas, a cleaner-burning fuel than coal that emits approximately half as much CO2 per kWh of energy produced. This rapid growth in the consumption of natural gas has led to increased CO2 emissions from gas-fired power plants. To limit the contribution of fossil fuel combustion to atmospheric CO2 levels, carbon capture and sequestration has been proposed as a potential emission mitigation strategy. However, despite extensive exploration of solid adsorbents for CO2 capture, few studies have examined the performance of adsorbents in post-combustion capture processes specific to natural gas flue emissions. In this perspective, we emphasize the importance of considering gas-fired power plants alongside coal-fired plants in future analyses of carbon capture materials. We address specific challenges and opportunities related to adsorptive carbon capture from the emissions of gas-fired plants and discuss several promising candidate materials. Finally, we suggest experiments to determine the viability of new CO2 capture materials for this separation. This broadening in the scope of current carbon capture research is urgently needed to accelerate the deployment of transformational carbon capture technologies.

96 citations


Authors

Showing all 16987 results

NameH-indexPapersCitations
David A. Weitz1781038114182
Avelino Corma134104989095
Peter Hall132164085019
James A. Dumesic11861558935
Robert H. Crabtree11367848634
Costas M. Soukoulis10864450208
Nicholas J. Turro104113153827
Edwin L. Thomas10460640819
Israel E. Wachs10342732029
Andrew I. Cooper9938934700
Michael J. Zaworotko9751944441
Enrique Iglesia9641631934
Yves J. Chabal9451933820
George E. Gehrels9245430560
Ping Sheng9059337141
Network Information
Related Institutions (5)
Sandia National Laboratories
46.7K papers, 1.4M citations

84% related

Delft University of Technology
94.4K papers, 2.7M citations

84% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

83% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

82% related

Argonne National Laboratory
64.3K papers, 2.4M citations

82% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20234
202236
2021302
2020340
2019366
2018438