scispace - formally typeset
Search or ask a question
Institution

ExxonMobil

CompanyIrving, Texas, United States
About: ExxonMobil is a company organization based out in Irving, Texas, United States. It is known for research contribution in the topics: Catalysis & Polymerization. The organization has 16969 authors who have published 23758 publications receiving 535713 citations. The organization is also known as: Exxon Mobil Corporation & Exxon Mobil Corp..
Topics: Catalysis, Polymerization, Polymer, Hydrocarbon, Alkyl


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a procedure for the preparation of high quality zeolite membranes was developed, which relies on a masking approach that fills all support pores with wax while leaving the top surface free for deposition of the zeolate film, thus, protecting the support from the synthesis mixture.

179 citations

Journal ArticleDOI
19 Aug 2016-Science
TL;DR: Free-standing carbon molecular sieve membranes are created that translate the advantages of reverse osmosis for aqueous separations to the separation of organic liquids for energy-intensive industrial separation processes.
Abstract: Liquid-phase separations of similarly sized organic molecules using membranes is a major challenge for energy-intensive industrial separation processes. We created free-standing carbon molecular sieve membranes that translate the advantages of reverse osmosis for aqueous separations to the separation of organic liquids. Polymer precursors were cross-linked with a one-pot technique that protected the porous morphology of the membranes from thermally induced structural rearrangement during carbonization. Permeation studies using benzene derivatives whose kinetic diameters differ by less than an angstrom show kinetically selective organic liquid reverse osmosis. Ratios of single-component fluxes for para- and ortho-xylene exceeding 25 were observed and para- and ortho- liquid mixtures were efficiently separated, with an equimolar feed enriched to 81 mole % para-xylene, without phase change and at ambient temperature.

179 citations

Journal ArticleDOI
M.A. Vannice1
TL;DR: In this article, the catalytic behavior of unsupported nickel and nickel dispersed on a variety of supports has been studied in the CO H 2 synthesis reaction, and the catalysts were characterized by chemisorption and X-ray diffraction measurements.

179 citations

Patent
06 Feb 1984
TL;DR: An improved replication process which copies a master pattern onto an intermediate transfer mask which is then used to form a lithographic mask on the surface of a substrate is described in this article.
Abstract: The present invention is an improved replication process which copies a master pattern onto an intermediate transfer mask which is then used to form a lithographic mask on the surface of a substrate. A pattern derived from the original master pattern is then produced in the substrate by an etching process.

179 citations

Journal ArticleDOI
01 Jan 2009
TL;DR: In this article, an on-the-fly kinetic mechanism reduction scheme, referred to as dynamic adaptive chemistry (DAC), was developed to incorporate detailed chemical kinetics into reactive flow computations with high efficiency and accuracy.
Abstract: An on-the-fly kinetic mechanism reduction scheme, referred to as dynamic adaptive chemistry (DAC), has been developed to incorporate detailed chemical kinetics into reactive flow computations with high efficiency and accuracy. The procedure entails reducing a detailed mechanism to locally and instantaneously accurate sub-mechanisms at each hydrodynamic time step of the calculation, and consequently no a priori information regarding simulation conditions is needed. The reduction utilizes an extended version of the directed relation graph (DRG) method in which the edges are weighted by a value that measures the dependence of the tail species (vertex) on the head species. An R-value is then defined at each vertex as the maximum of the products of these weights along all paths to that vertex from an initiating species. Active species are identified by their R-values exceeding a threshold value, eR, using a modified breadth-first search (BFS) that starts from a pre-defined set of initiating species. Chemical kinetics equations are then formulated with respect to the active species, with the inactive species considered only as third body collision partners. The DAC method is implemented into CHEMKIN and tested by simulating homogeneous charge compression ignition (HCCI) combustion using detailed and pre-reduced n-heptane mechanisms (578 species and 178 species, respectively) as the full mechanisms. The DAC scheme reproduces with high accuracy the pressure curves and species mass fractions obtained using the full mechanisms. The on-the-fly mechanism reduction scheme introduces minimal computational overhead and achieves more than 30-fold time reduction in calculations using the 578-species mechanism.

178 citations


Authors

Showing all 16987 results

NameH-indexPapersCitations
David A. Weitz1781038114182
Avelino Corma134104989095
Peter Hall132164085019
James A. Dumesic11861558935
Robert H. Crabtree11367848634
Costas M. Soukoulis10864450208
Nicholas J. Turro104113153827
Edwin L. Thomas10460640819
Israel E. Wachs10342732029
Andrew I. Cooper9938934700
Michael J. Zaworotko9751944441
Enrique Iglesia9641631934
Yves J. Chabal9451933820
George E. Gehrels9245430560
Ping Sheng9059337141
Network Information
Related Institutions (5)
Sandia National Laboratories
46.7K papers, 1.4M citations

84% related

Delft University of Technology
94.4K papers, 2.7M citations

84% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

83% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

82% related

Argonne National Laboratory
64.3K papers, 2.4M citations

82% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20234
202236
2021302
2020340
2019366
2018438