scispace - formally typeset
Search or ask a question
Institution

Facebook

CompanyTel Aviv, Israel
About: Facebook is a company organization based out in Tel Aviv, Israel. It is known for research contribution in the topics: Artificial neural network & Language model. The organization has 7856 authors who have published 10906 publications receiving 570123 citations. The organization is also known as: facebook.com & FB.


Papers
More filters
Patent
Ajaipal Singh Virdy1
15 Sep 2012
TL;DR: In this paper, an intelligent geographic and business topic-specific resource discovery system facilitates local commerce on the World Wide Web and also reduces search time by accurately isolating information for end-users.
Abstract: A method and search engine for classifying a source publishing a document on a portion of a network, includes steps of electronically receiving a document, based on the document, determining a source which published the document, and assigning a code to the document based on whether data associated with the document published by the source matches with data contained in a database. An intelligent geographic- and business topic-specific resource discovery system facilitates local commerce on the World-Wide Web and also reduces search time by accurately isolating information for end-users. Distinguishing and classifying business pages on the Web by business categories using Standard Industrial Classification (SIC) codes is achieved through an automatic iterative process.

189 citations

Proceedings ArticleDOI
07 Sep 2016
TL;DR: Meta-Prod2vec as mentioned in this paper leverages past user interactions with items and their attributes to compute low-dimensional embeddings of items and injects item metadata into the model as side information to regularize the item embedding.
Abstract: We propose Meta-Prod2vec, a novel method to compute item similarities for recommendation that leverages existing item metadata. Such scenarios are frequently encountered in applications such as content recommendation, ad targeting and web search. Our method leverages past user interactions with items and their attributes to compute low-dimensional embeddings of items. Specifically, the item metadata is injected into the model as side information to regularize the item embeddings. We show that the new item representations lead to better performance on recommendation tasks on an open music dataset.

189 citations

Posted Content
TL;DR: It is shown that proper cluster randomization can lead to exponentially lower estimator variance when experimentally measuring average treatment effects under interference, and if a graph satisfies a restricted-growth condition on the growth rate of neighborhoods, then there exists a natural clustering algorithm, based on vertex neighborhoods, for which the variance of the estimator can be upper bounded by a linear function of the degrees.
Abstract: A/B testing is a standard approach for evaluating the effect of online experiments; the goal is to estimate the `average treatment effect' of a new feature or condition by exposing a sample of the overall population to it. A drawback with A/B testing is that it is poorly suited for experiments involving social interference, when the treatment of individuals spills over to neighboring individuals along an underlying social network. In this work, we propose a novel methodology using graph clustering to analyze average treatment effects under social interference. To begin, we characterize graph-theoretic conditions under which individuals can be considered to be `network exposed' to an experiment. We then show how graph cluster randomization admits an efficient exact algorithm to compute the probabilities for each vertex being network exposed under several of these exposure conditions. Using these probabilities as inverse weights, a Horvitz-Thompson estimator can then provide an effect estimate that is unbiased, provided that the exposure model has been properly specified. Given an estimator that is unbiased, we focus on minimizing the variance. First, we develop simple sufficient conditions for the variance of the estimator to be asymptotically small in n, the size of the graph. However, for general randomization schemes, this variance can be lower bounded by an exponential function of the degrees of a graph. In contrast, we show that if a graph satisfies a restricted-growth condition on the growth rate of neighborhoods, then there exists a natural clustering algorithm, based on vertex neighborhoods, for which the variance of the estimator can be upper bounded by a linear function of the degrees. Thus we show that proper cluster randomization can lead to exponentially lower estimator variance when experimentally measuring average treatment effects under interference.

189 citations

Posted Content
TL;DR: This paper introduced the SCAN domain, consisting of a set of simple compositional navigation commands paired with corresponding action sequences, and tested the zero-shot generalization capabilities of a variety of recurrent neural networks (RNNs) trained on SCAN with sequence-to-sequence methods.
Abstract: Humans can understand and produce new utterances effortlessly, thanks to their compositional skills. Once a person learns the meaning of a new verb "dax," he or she can immediately understand the meaning of "dax twice" or "sing and dax." In this paper, we introduce the SCAN domain, consisting of a set of simple compositional navigation commands paired with the corresponding action sequences. We then test the zero-shot generalization capabilities of a variety of recurrent neural networks (RNNs) trained on SCAN with sequence-to-sequence methods. We find that RNNs can make successful zero-shot generalizations when the differences between training and test commands are small, so that they can apply "mix-and-match" strategies to solve the task. However, when generalization requires systematic compositional skills (as in the "dax" example above), RNNs fail spectacularly. We conclude with a proof-of-concept experiment in neural machine translation, suggesting that lack of systematicity might be partially responsible for neural networks' notorious training data thirst.

189 citations

Proceedings ArticleDOI
Dmitriy Serdyuk1, Yongqiang Wang1, Christian Fuegen1, Anuj Kumar1, Baiyang Liu1, Yoshua Bengio1 
15 Apr 2018
TL;DR: This study showed that the trained model can achieve reasonable good result and demonstrated that the model can capture the semantic attention directly from the audio features.
Abstract: Spoken language understanding system is traditionally designed as a pipeline of a number of components. First, the audio signal is processed by an automatic speech recognizer for transcription or n-best hypotheses. With the recognition results, a natural language understanding system classifies the text to structured data as domain, intent and slots for down-streaming consumers, such as dialog system, hands-free applications. These components are usually developed and optimized independently. In this paper, we present our study on an end-to-end learning system for spoken language understanding. With this unified approach, we can infer the semantic meaning directly from audio features without the intermediate text representation. This study showed that the trained model can achieve reasonable good result and demonstrated that the model can capture the semantic attention directly from the audio features.

189 citations


Authors

Showing all 7875 results

NameH-indexPapersCitations
Yoshua Bengio2021033420313
Xiang Zhang1541733117576
Jitendra Malik151493165087
Trevor Darrell148678181113
Christopher D. Manning138499147595
Robert W. Heath128104973171
Pieter Abbeel12658970911
Yann LeCun121369171211
Li Fei-Fei120420145574
Jon Kleinberg11744487865
Sergey Levine11565259769
Richard Szeliski11335972019
Sanjeev Kumar113132554386
Bruce Neal10856187213
Larry S. Davis10769349714
Network Information
Related Institutions (5)
Google
39.8K papers, 2.1M citations

98% related

Microsoft
86.9K papers, 4.1M citations

96% related

Adobe Systems
8K papers, 214.7K citations

94% related

Carnegie Mellon University
104.3K papers, 5.9M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
202237
20211,738
20202,017
20191,607
20181,229