scispace - formally typeset
Search or ask a question
Institution

Facebook

CompanyTel Aviv, Israel
About: Facebook is a company organization based out in Tel Aviv, Israel. It is known for research contribution in the topics: Computer science & Artificial neural network. The organization has 7856 authors who have published 10906 publications receiving 570123 citations. The organization is also known as: facebook.com & FB.


Papers
More filters
Proceedings ArticleDOI
01 Jul 2020
TL;DR: An information-theoretic operationalization of probing as estimating mutual information that contradicts received wisdom: one should always select the highest performing probe one can, even if it is more complex, since it will result in a tighter estimate, and thus reveal more of the linguistic information inherent in the representation.
Abstract: The success of neural networks on a diverse set of NLP tasks has led researchers to question how much these networks actually ``know'' about natural language. Probes are a natural way of assessing this. When probing, a researcher chooses a linguistic task and trains a supervised model to predict annotations in that linguistic task from the network's learned representations. If the probe does well, the researcher may conclude that the representations encode knowledge related to the task. A commonly held belief is that using simpler models as probes is better; the logic is that simpler models will identify linguistic structure, but not learn the task itself. We propose an information-theoretic operationalization of probing as estimating mutual information that contradicts this received wisdom: one should always select the highest performing probe one can, even if it is more complex, since it will result in a tighter estimate, and thus reveal more of the linguistic information inherent in the representation. The experimental portion of our paper focuses on empirically estimating the mutual information between a linguistic property and BERT, comparing these estimates to several baselines. We evaluate on a set of ten typologically diverse languages often underrepresented in NLP research---plus English---totalling eleven languages. Our implementation is available in https://github.com/rycolab/info-theoretic-probing.

162 citations

Posted ContentDOI
17 May 2020-bioRxiv
TL;DR: The proposed BrainGNN framework, a graph neural network (GNN) framework to analyze functional magnetic resonance images (fMRI) and discover neurological biomarkers, contains ROI-selection pooling layers that highlight salient ROIs (nodes in the graph) so that it can infer which ROIs are important for prediction.
Abstract: Understanding how certain brain regions relate to a specific neurological disorder or cognitive stimuli has been an important area of neuroimaging research. We propose BrainGNN, a graph neural network (GNN) framework to analyze functional magnetic resonance images (fMRI) and discover neurological biomarkers. Considering the special property of brain graphs, we design novel ROI-aware graph convolutional (Ra-GConv) layers that leverage the topological and functional information of fMRI. Motivated by the need for transparency in medical image analysis, our BrainGNN contains ROI-selection pooling layers (R-pool) that highlight salient ROIs (nodes in the graph), so that we can infer which ROIs are important for prediction. Furthermore, we propose regularization terms - unit loss, topK pooling (TPK) loss and group-level consistency (GLC) loss - on pooling results to encourage reasonable ROI-selection and provide flexibility to preserve either individual- or group-level patterns. We apply the BrainGNN framework on two independent fMRI datasets: Autism Spectral Disorder (ASD) fMRI dataset and Human Connectome Project (HCP) 900 Subject Release. We investigate different choices of the hyperparameters and show that BrainGNN outperforms the alternative fMRI image analysis methods in terms of four different evaluation metrics. The obtained community clustering and salient ROI detection results show high correspondence with the previous neuroimaging-derived evidence of biomarkers for ASD and specific task states decoded for HCP.

162 citations

Patent
15 May 1998
TL;DR: In this paper, the authors present a method and means for self-policing and automatically rate-limiting multiple-user online forums, which includes a set of rules that permit users to censure other users.
Abstract: A method and means for self-policing and automatically rate-limiting multiple-user online forums. The preferred embodiment of the invention includes a set of rules that permit users to censure other users. A censured user has one or more “privileges” (which may include access to the online computer system or the effective message rate of a communications connection) taken away or diminished; the privilege is gradually restored if the censured user behaves. The censuring participant and other pertinent participants are notified of the effect of the censuring on the censured user. In another aspect of the invention, the online computer system automatically tracks the rate at which a user sends certain types of messages, and can message rate limit a user who uses too many system resources by sending a large number of messages in rapid succession.

162 citations

Journal ArticleDOI
26 Sep 2017
TL;DR: This work evaluates methods for designing and analyzing randomized experiments under minimal, realistic assumptions compatible with broad interference, finding substantial bias reductions and, despite a bias–variance tradeoff, error reductions.
Abstract: Estimating the effects of interventions in networks is complicated due to interference, such that the outcomes for one experimental unit may depend on the treatment assignments of other units. Familiar statistical formalism, experimental designs, and analysis methods assume the absence of this interference, and result in biased estimates of causal effects when it exists. While some assumptions can lead to unbiased estimates, these assumptions are generally unrealistic in the context of a network and often amount to assuming away the interference. In this work, we evaluate methods for designing and analyzing randomized experiments under minimal, realistic assumptions compatible with broad interference, where the aim is to reduce bias and possibly overall error in estimates of average effects of a global treatment. In design, we consider the ability to perform random assignment to treatments that is correlated in the network, such as through graph cluster randomization. In analysis, we consider incorporating information about the treatment assignment of network neighbors. We prove sufficient conditions for bias reduction through both design and analysis in the presence of potentially global interference; these conditions also give lower bounds on treatment effects. Through simulations of the entire process of experimentation in networks, we measure the performance of these methods under varied network structure and varied social behaviors, finding substantial bias reductions and, despite a bias–variance tradeoff, error reductions. These improvements are largest for networks with more clustering and data generating processes with both stronger direct effects of the treatment and stronger interactions between units.

162 citations

Proceedings Article
01 Jan 2019
TL;DR: This work proposes Simultaneous Quantile Regression (SQR), a loss function to learn all the conditional quantiles of a given target variable, which can be used to compute well-calibrated prediction intervals.
Abstract: We provide single-model estimates of aleatoric and epistemic uncertainty for deep neural networks. To estimate aleatoric uncertainty, we propose Simultaneous Quantile Regression (SQR), a loss function to learn all the conditional quantiles of a given target variable. These quantiles can be used to compute well-calibrated prediction intervals. To estimate epistemic uncertainty, we propose Orthonormal Certificates (OCs), a collection of diverse non-constant functions that map all training samples to zero. These certificates map out-of-distribution examples to non-zero values, signaling epistemic uncertainty. Our uncertainty estimators are computationally attractive, as they do not require ensembling or retraining deep models, and achieve state-of-the-art performance.

162 citations


Authors

Showing all 7875 results

NameH-indexPapersCitations
Yoshua Bengio2021033420313
Xiang Zhang1541733117576
Jitendra Malik151493165087
Trevor Darrell148678181113
Christopher D. Manning138499147595
Robert W. Heath128104973171
Pieter Abbeel12658970911
Yann LeCun121369171211
Li Fei-Fei120420145574
Jon Kleinberg11744487865
Sergey Levine11565259769
Richard Szeliski11335972019
Sanjeev Kumar113132554386
Bruce Neal10856187213
Larry S. Davis10769349714
Network Information
Related Institutions (5)
Google
39.8K papers, 2.1M citations

98% related

Microsoft
86.9K papers, 4.1M citations

96% related

Adobe Systems
8K papers, 214.7K citations

94% related

Carnegie Mellon University
104.3K papers, 5.9M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
202237
20211,738
20202,017
20191,607
20181,229