scispace - formally typeset
Search or ask a question
Institution

Facebook

CompanyTel Aviv, Israel
About: Facebook is a company organization based out in Tel Aviv, Israel. It is known for research contribution in the topics: Artificial neural network & Language model. The organization has 7856 authors who have published 10906 publications receiving 570123 citations. The organization is also known as: facebook.com & FB.


Papers
More filters
Posted Content
TL;DR: This paper proposes a novel method that leverages a generative model to naturally push related samples together, and results in representations that explicitly encode semantics shared between samples, unlike noise contrastive learning.
Abstract: The dominant paradigm for learning video-text representations -- noise contrastive learning -- increases the similarity of the representations of pairs of samples that are known to be related, such as text and video from the same sample, and pushes away the representations of all other pairs. We posit that this last behaviour is too strict, enforcing dissimilar representations even for samples that are semantically-related -- for example, visually similar videos or ones that share the same depicted action. In this paper, we propose a novel method that alleviates this by leveraging a generative model to naturally push these related samples together: each sample's caption must be reconstructed as a weighted combination of other support samples' visual representations. This simple idea ensures that representations are not overly-specialized to individual samples, are reusable across the dataset, and results in representations that explicitly encode semantics shared between samples, unlike noise contrastive learning. Our proposed method outperforms others by a large margin on MSR-VTT, VATEX and ActivityNet, and MSVD for video-to-text and text-to-video retrieval.

129 citations

Posted Content
TL;DR: In this paper, Li et al. established dense correspondences between RGB image and a surface-based representation of the human body, a task referred to as dense human pose estimation, and trained CNN-based systems that deliver dense correspondence 'in the wild', namely in the presence of background, occlusions and scale variations.
Abstract: In this work, we establish dense correspondences between RGB image and a surface-based representation of the human body, a task we refer to as dense human pose estimation. We first gather dense correspondences for 50K persons appearing in the COCO dataset by introducing an efficient annotation pipeline. We then use our dataset to train CNN-based systems that deliver dense correspondence 'in the wild', namely in the presence of background, occlusions and scale variations. We improve our training set's effectiveness by training an 'inpainting' network that can fill in missing groundtruth values and report clear improvements with respect to the best results that would be achievable in the past. We experiment with fully-convolutional networks and region-based models and observe a superiority of the latter; we further improve accuracy through cascading, obtaining a system that delivers highly0accurate results in real time. Supplementary materials and videos are provided on the project page this http URL

129 citations

Proceedings Article
22 Jul 2020
TL;DR: Neural Sparse Voxel Fields (NSVF) as mentioned in this paper is a new neural scene representation for fast and high-quality free-viewpoint rendering, which defines a set of voxel-bounded implicit fields organized in a sparse octree to model local properties in each cell.
Abstract: Photo-realistic free-viewpoint rendering of real-world scenes using classical computer graphics techniques is challenging, because it requires the difficult step of capturing detailed appearance and geometry models. Recent studies have demonstrated promising results by learning scene representations that implicitly encode both geometry and appearance without 3D supervision. However, existing approaches in practice often show blurry renderings caused by the limited network capacity or the difficulty in finding accurate intersections of camera rays with the scene geometry. Synthesizing high-resolution imagery from these representations often requires time-consuming optical ray marching. In this work, we introduce Neural Sparse Voxel Fields (NSVF), a new neural scene representation for fast and high-quality free-viewpoint rendering. NSVF defines a set of voxel-bounded implicit fields organized in a sparse voxel octree to model local properties in each cell. We progressively learn the underlying voxel structures with a differentiable ray-marching operation from only a set of posed RGB images. With the sparse voxel octree structure, rendering novel views can be accelerated by skipping the voxels containing no relevant scene content. Our method is typically over 10 times faster than the state-of-the-art (namely, NeRF(Mildenhall et al., 2020)) at inference time while achieving higher quality results. Furthermore, by utilizing an explicit sparse voxel representation, our method can easily be applied to scene editing and scene composition. We also demonstrate several challenging tasks, including multi-scene learning, free-viewpoint rendering of a moving human, and large-scale scene rendering. Code and data are available at our website: this https URL.

129 citations

Posted Content
TL;DR: The authors compare several machine learning approaches to sentiment analysis, and combine them to achieve the best possible results on a large dataset of IMDB movie reviews, and show how to use for this task the standard generative language model.
Abstract: Sentiment analysis is a common task in natural language processing that aims to detect polarity of a text document (typically a consumer review). In the simplest settings, we discriminate only between positive and negative sentiment, turning the task into a standard binary classification problem. We compare several ma- chine learning approaches to this problem, and combine them to achieve the best possible results. We show how to use for this task the standard generative lan- guage models, which are slightly complementary to the state of the art techniques. We achieve strong results on a well-known dataset of IMDB movie reviews. Our results are easily reproducible, as we publish also the code needed to repeat the experiments. This should simplify further advance of the state of the art, as other researchers can combine their techniques with ours with little effort.

128 citations

Proceedings Article
16 May 2010
TL;DR: An approach to determine the ethnic breakdown of a population based solely on people's names and data provided by the U.S. Census Bureau is demonstrated to be able to predict the ethnicities of individuals as well as the ethnicity of an entire population better than natural alternatives.
Abstract: We propose an approach to determine the ethnic breakdown of a population based solely on people's names and data provided by the U.S. Census Bureau. We demonstrate that our approach is able to predict the ethnicities of individuals as well as the ethnicity of an entire population better than natural alternatives. We apply our technique to the population of U.S. Facebook users and uncover the demographic characteristics of ethnicities and how they relate. We also discover that while Facebook has always been diverse, diversity has increased over time leading to a population that today looks very similar to the overall U.S. population. We also find that different ethnic groups relate to one another in an assortative manner, and that these groups have different profiles across demographics, beliefs, and usage of site features.

128 citations


Authors

Showing all 7875 results

NameH-indexPapersCitations
Yoshua Bengio2021033420313
Xiang Zhang1541733117576
Jitendra Malik151493165087
Trevor Darrell148678181113
Christopher D. Manning138499147595
Robert W. Heath128104973171
Pieter Abbeel12658970911
Yann LeCun121369171211
Li Fei-Fei120420145574
Jon Kleinberg11744487865
Sergey Levine11565259769
Richard Szeliski11335972019
Sanjeev Kumar113132554386
Bruce Neal10856187213
Larry S. Davis10769349714
Network Information
Related Institutions (5)
Google
39.8K papers, 2.1M citations

98% related

Microsoft
86.9K papers, 4.1M citations

96% related

Adobe Systems
8K papers, 214.7K citations

94% related

Carnegie Mellon University
104.3K papers, 5.9M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
202237
20211,738
20202,017
20191,607
20181,229