scispace - formally typeset
Search or ask a question
Institution

Facebook

CompanyTel Aviv, Israel
About: Facebook is a company organization based out in Tel Aviv, Israel. It is known for research contribution in the topics: Artificial neural network & Language model. The organization has 7856 authors who have published 10906 publications receiving 570123 citations. The organization is also known as: facebook.com & FB.


Papers
More filters
Patent
Harmannus Vandermolen, Charles Fish, Karen Howe1, Paul Vidich1, Scott J. Levine1 
15 Mar 2013
TL;DR: In this paper, a user profile associated with the user may be updated based on the subset of topics associated with content of the document, and a set of topics responsible for the user finding the document significant may be identified.
Abstract: Content that is significant to a user may be determined. An indication that a user finds content within a document significant may be received. In response to the received indication, the document may be analyzed to identify a set of topics associated with the content of the document. From the set of topics, a subset of topics responsible for the user finding the document significant may be identified. A user profile associated with the user may be updated based on the subset of topics.

127 citations

Proceedings Article
26 Feb 2018
TL;DR: Self Other-Modeling (SOM) as mentioned in this paper is a self-supervised reinforcement learning approach in which an agent uses its own policy to predict the other agent's actions and update its belief of their hidden state in an online manner.
Abstract: We consider the multi-agent reinforcement learning setting with imperfect information in which each agent is trying to maximize its own utility. The reward function depends on the hidden state (or goal) of both agents, so the agents must infer the other players' hidden goals from their observed behavior in order to solve the tasks. We propose a new approach for learning in these domains: Self Other-Modeling (SOM), in which an agent uses its own policy to predict the other agent's actions and update its belief of their hidden state in an online manner. We evaluate this approach on three different tasks and show that the agents are able to learn better policies using their estimate of the other players' hidden states, in both cooperative and adversarial settings.

126 citations

Proceedings Article
24 May 2019
TL;DR: Deep Counterfactual Regret Minimization as mentioned in this paper obviates the need for abstraction by instead using deep neural networks to approximate the behavior of CFR in the full game, which is the first non-tabular variant of CFR to be successful in large games.
Abstract: Counterfactual Regret Minimization (CFR) is the leading framework for solving large imperfect-information games. It converges to an equilibrium by iteratively traversing the game tree. In order to deal with extremely large games, abstraction is typically applied before running CFR. The abstracted game is solved with tabular CFR, and its solution is mapped back to the full game. This process can be problematic because aspects of abstraction are often manual and domain specific, abstraction algorithms may miss important strategic nuances of the game, and there is a chicken-and-egg problem because determining a good abstraction requires knowledge of the equilibrium of the game. This paper introduces Deep Counterfactual Regret Minimization, a form of CFR that obviates the need for abstraction by instead using deep neural networks to approximate the behavior of CFR in the full game. We show that Deep CFR is principled and achieves strong performance in large poker games. This is the first non-tabular variant of CFR to be successful in large games.

126 citations

Patent
28 Jan 2014
TL;DR: In this paper, the authors present a method for receiving an unstructured text query from a first user of an online social network; and accessing, from a data store of the mobile client system, a set of nodes of a social graph.
Abstract: In one embodiment, a method includes receiving an unstructured text query from a first user of an online social network; and accessing, from a data store of the mobile client system, a set of nodes of a social graph of the online social network. The social graph includes a number of nodes and edges connecting the nodes. The nodes include a first node corresponding to the first user and a number of second nodes that each correspond to a concept or a second user associated with the online social network. The method also includes accessing, from the data store of the mobile client system, a set of grammar templates. Each grammar template includes one or more non-terminal tokens and one or more query tokens. The query tokens include references to zero or more second nodes and one or more edges and each grammar template is based on a natural-language string.

126 citations

Journal ArticleDOI
TL;DR: This work applies a regularized zero-forcing precoder for the baseband precoding matrix to find an unconstrained analog precoder that maximizes signal-to-leakage-plus-noise ratio (SLNR) while ignoring analog phase shifter constraints.
Abstract: We propose a new hybrid precoding technique for massive multi-input multi-output (MIMO) systems using spatial channel covariance matrices in the analog precoder design. Applying a regularized zero-forcing precoder for the baseband precoding matrix, we find an unconstrained analog precoder that maximizes signal-to-leakage-plus-noise ratio (SLNR) while ignoring analog phase shifter constraints. Subsequently, we develop a technique to design a constrained analog precoder that mimics the obtained unconstrained analog precoder under phase shifter constraints. The main idea is to adopt an additional baseband precoding matrix, which we call a compensation matrix. We analyze the SLNR loss due to the proposed hybrid precoding compared to fully digital precoding, and determine which factors have a significant impact on this loss. In the simulations, we show that if the channel is spatially correlated and the number of users is smaller than the number of RF chains, the SLNR loss becomes negligible compared to fully digital precoding. The main benefit of our method stems from the use of spatial channel matrices in such a way that not only is each user's desired signal considered, but also the inter-user interference is incorporated in the analog precoder design.

126 citations


Authors

Showing all 7875 results

NameH-indexPapersCitations
Yoshua Bengio2021033420313
Xiang Zhang1541733117576
Jitendra Malik151493165087
Trevor Darrell148678181113
Christopher D. Manning138499147595
Robert W. Heath128104973171
Pieter Abbeel12658970911
Yann LeCun121369171211
Li Fei-Fei120420145574
Jon Kleinberg11744487865
Sergey Levine11565259769
Richard Szeliski11335972019
Sanjeev Kumar113132554386
Bruce Neal10856187213
Larry S. Davis10769349714
Network Information
Related Institutions (5)
Google
39.8K papers, 2.1M citations

98% related

Microsoft
86.9K papers, 4.1M citations

96% related

Adobe Systems
8K papers, 214.7K citations

94% related

Carnegie Mellon University
104.3K papers, 5.9M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
202237
20211,738
20202,017
20191,607
20181,229