scispace - formally typeset
Search or ask a question
Institution

Facebook

CompanyTel Aviv, Israel
About: Facebook is a company organization based out in Tel Aviv, Israel. It is known for research contribution in the topics: Computer science & Artificial neural network. The organization has 7856 authors who have published 10906 publications receiving 570123 citations. The organization is also known as: facebook.com & FB.


Papers
More filters
Posted Content
TL;DR: In this article, the authors propose a value-based method that can train decentralised policies in a centralised end-to-end fashion in simulated or laboratory settings, where global state information is available and communication constraints are lifted.
Abstract: In many real-world settings, a team of agents must coordinate their behaviour while acting in a decentralised way. At the same time, it is often possible to train the agents in a centralised fashion in a simulated or laboratory setting, where global state information is available and communication constraints are lifted. Learning joint action-values conditioned on extra state information is an attractive way to exploit centralised learning, but the best strategy for then extracting decentralised policies is unclear. Our solution is QMIX, a novel value-based method that can train decentralised policies in a centralised end-to-end fashion. QMIX employs a network that estimates joint action-values as a complex non-linear combination of per-agent values that condition only on local observations. We structurally enforce that the joint-action value is monotonic in the per-agent values, which allows tractable maximisation of the joint action-value in off-policy learning, and guarantees consistency between the centralised and decentralised policies. We evaluate QMIX on a challenging set of StarCraft II micromanagement tasks, and show that QMIX significantly outperforms existing value-based multi-agent reinforcement learning methods.

693 citations

Proceedings ArticleDOI
13 Sep 2018
TL;DR: This work constructs an evaluation set for XLU by extending the development and test sets of the Multi-Genre Natural Language Inference Corpus to 14 languages, including low-resource languages such as Swahili and Urdu and finds that XNLI represents a practical and challenging evaluation suite and that directly translating the test data yields the best performance among available baselines.
Abstract: State-of-the-art natural language processing systems rely on supervision in the form of annotated data to learn competent models. These models are generally trained on data in a single language (usually English), and cannot be directly used beyond that language. Since collecting data in every language is not realistic, there has been a growing interest in cross-lingual language understanding (XLU) and low-resource cross-language transfer. In this work, we construct an evaluation set for XLU by extending the development and test sets of the Multi-Genre Natural Language Inference Corpus (MultiNLI) to 14 languages, including low-resource languages such as Swahili and Urdu. We hope that our dataset, dubbed XNLI, will catalyze research in cross-lingual sentence understanding by providing an informative standard evaluation task. In addition, we provide several baselines for multilingual sentence understanding, including two based on machine translation systems, and two that use parallel data to train aligned multilingual bag-of-words and LSTM encoders. We find that XNLI represents a practical and challenging evaluation suite, and that directly translating the test data yields the best performance among available baselines.

687 citations

Proceedings ArticleDOI
31 Mar 2017
TL;DR: This approach combines a search component based on bigram hashing and TF-IDF matching with a multi-layer recurrent neural network model trained to detect answers in Wikipedia paragraphs, indicating that both modules are highly competitive with respect to existing counterparts.
Abstract: This paper proposes to tackle open-domain question answering using Wikipedia as the unique knowledge source: the answer to any factoid question is a text span in a Wikipedia article. This task of machine reading at scale combines the challenges of document retrieval (finding the relevant articles) with that of machine comprehension of text (identifying the answer spans from those articles). Our approach combines a search component based on bigram hashing and TF-IDF matching with a multi-layer recurrent neural network model trained to detect answers in Wikipedia paragraphs. Our experiments on multiple existing QA datasets indicate that (1) both modules are highly competitive with respect to existing counterparts and (2) multitask learning using distant supervision on their combination is an effective complete system on this challenging task.

685 citations

Book ChapterDOI
08 Oct 2016
TL;DR: This paper forms an approach for learning a visual representation from the raw spatiotemporal signals in videos using a Convolutional Neural Network, and shows that this method captures information that is temporally varying, such as human pose.
Abstract: In this paper, we present an approach for learning a visual representation from the raw spatiotemporal signals in videos. Our representation is learned without supervision from semantic labels. We formulate our method as an unsupervised sequential verification task, i.e., we determine whether a sequence of frames from a video is in the correct temporal order. With this simple task and no semantic labels, we learn a powerful visual representation using a Convolutional Neural Network (CNN). The representation contains complementary information to that learned from supervised image datasets like ImageNet. Qualitative results show that our method captures information that is temporally varying, such as human pose. When used as pre-training for action recognition, our method gives significant gains over learning without external data on benchmark datasets like UCF101 and HMDB51. To demonstrate its sensitivity to human pose, we show results for pose estimation on the FLIC and MPII datasets that are competitive, or better than approaches using significantly more supervision. Our method can be combined with supervised representations to provide an additional boost in accuracy.

683 citations

Posted Content
TL;DR: This paper showed that pretraining multilingual language models at scale leads to significant performance gains for a wide range of cross-lingual transfer tasks and proposed a Transformer-based masked language model on one hundred languages, using more than two terabytes of filtered CommonCrawl data.
Abstract: This paper shows that pretraining multilingual language models at scale leads to significant performance gains for a wide range of cross-lingual transfer tasks. We train a Transformer-based masked language model on one hundred languages, using more than two terabytes of filtered CommonCrawl data. Our model, dubbed XLM-R, significantly outperforms multilingual BERT (mBERT) on a variety of cross-lingual benchmarks, including +14.6% average accuracy on XNLI, +13% average F1 score on MLQA, and +2.4% F1 score on NER. XLM-R performs particularly well on low-resource languages, improving 15.7% in XNLI accuracy for Swahili and 11.4% for Urdu over previous XLM models. We also present a detailed empirical analysis of the key factors that are required to achieve these gains, including the trade-offs between (1) positive transfer and capacity dilution and (2) the performance of high and low resource languages at scale. Finally, we show, for the first time, the possibility of multilingual modeling without sacrificing per-language performance; XLM-R is very competitive with strong monolingual models on the GLUE and XNLI benchmarks. We will make our code, data and models publicly available.

669 citations


Authors

Showing all 7875 results

NameH-indexPapersCitations
Yoshua Bengio2021033420313
Xiang Zhang1541733117576
Jitendra Malik151493165087
Trevor Darrell148678181113
Christopher D. Manning138499147595
Robert W. Heath128104973171
Pieter Abbeel12658970911
Yann LeCun121369171211
Li Fei-Fei120420145574
Jon Kleinberg11744487865
Sergey Levine11565259769
Richard Szeliski11335972019
Sanjeev Kumar113132554386
Bruce Neal10856187213
Larry S. Davis10769349714
Network Information
Related Institutions (5)
Google
39.8K papers, 2.1M citations

98% related

Microsoft
86.9K papers, 4.1M citations

96% related

Adobe Systems
8K papers, 214.7K citations

94% related

Carnegie Mellon University
104.3K papers, 5.9M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
202237
20211,738
20202,017
20191,607
20181,229