scispace - formally typeset
Search or ask a question
Institution

Facebook

CompanyTel Aviv, Israel
About: Facebook is a company organization based out in Tel Aviv, Israel. It is known for research contribution in the topics: Artificial neural network & Language model. The organization has 7856 authors who have published 10906 publications receiving 570123 citations. The organization is also known as: facebook.com & FB.


Papers
More filters
Posted Content
TL;DR: Experiments show that ImageNet pre-training speeds up convergence early in training, but does not necessarily provide regularization or improve final target task accuracy, and these discoveries will encourage people to rethink the current de facto paradigm of `pre-training and fine-tuning' in computer vision.
Abstract: We report competitive results on object detection and instance segmentation on the COCO dataset using standard models trained from random initialization. The results are no worse than their ImageNet pre-training counterparts even when using the hyper-parameters of the baseline system (Mask R-CNN) that were optimized for fine-tuning pre-trained models, with the sole exception of increasing the number of training iterations so the randomly initialized models may converge. Training from random initialization is surprisingly robust; our results hold even when: (i) using only 10% of the training data, (ii) for deeper and wider models, and (iii) for multiple tasks and metrics. Experiments show that ImageNet pre-training speeds up convergence early in training, but does not necessarily provide regularization or improve final target task accuracy. To push the envelope we demonstrate 50.9 AP on COCO object detection without using any external data---a result on par with the top COCO 2017 competition results that used ImageNet pre-training. These observations challenge the conventional wisdom of ImageNet pre-training for dependent tasks and we expect these discoveries will encourage people to rethink the current de facto paradigm of `pre-training and fine-tuning' in computer vision.

597 citations

Posted Content
TL;DR: An extra noise layer is introduced into the network which adapts the network outputs to match the noisy label distribution and can be estimated as part of the training process and involve simple modifications to current training infrastructures for deep networks.
Abstract: The availability of large labeled datasets has allowed Convolutional Network models to achieve impressive recognition results. However, in many settings manual annotation of the data is impractical; instead our data has noisy labels, i.e. there is some freely available label for each image which may or may not be accurate. In this paper, we explore the performance of discriminatively-trained Convnets when trained on such noisy data. We introduce an extra noise layer into the network which adapts the network outputs to match the noisy label distribution. The parameters of this noise layer can be estimated as part of the training process and involve simple modifications to current training infrastructures for deep networks. We demonstrate the approaches on several datasets, including large scale experiments on the ImageNet classification benchmark.

595 citations

Posted Content
TL;DR: In this paper, the authors propose to unify the tasks of instance segmentation and semantic segmentation at the architectural level, designing a single network for both tasks, which is called Panoptic FPN (Panoptic Feature Pyramid Network).
Abstract: The recently introduced panoptic segmentation task has renewed our community's interest in unifying the tasks of instance segmentation (for thing classes) and semantic segmentation (for stuff classes). However, current state-of-the-art methods for this joint task use separate and dissimilar networks for instance and semantic segmentation, without performing any shared computation. In this work, we aim to unify these methods at the architectural level, designing a single network for both tasks. Our approach is to endow Mask R-CNN, a popular instance segmentation method, with a semantic segmentation branch using a shared Feature Pyramid Network (FPN) backbone. Surprisingly, this simple baseline not only remains effective for instance segmentation, but also yields a lightweight, top-performing method for semantic segmentation. In this work, we perform a detailed study of this minimally extended version of Mask R-CNN with FPN, which we refer to as Panoptic FPN, and show it is a robust and accurate baseline for both tasks. Given its effectiveness and conceptual simplicity, we hope our method can serve as a strong baseline and aid future research in panoptic segmentation.

593 citations

Proceedings ArticleDOI
21 Apr 2019
TL;DR: VoteNet as mentioned in this paper proposes an end-to-end 3D object detection network based on a synergy of deep point set networks and Hough voting, which achieves state-of-the-art performance on two large datasets of real 3D scans.
Abstract: Current 3D object detection methods are heavily influenced by 2D detectors. In order to leverage architectures in 2D detectors, they often convert 3D point clouds to regular grids (i.e., to voxel grids or to bird's eye view images), or rely on detection in 2D images to propose 3D boxes. Few works have attempted to directly detect objects in point clouds. In this work, we return to first principles to construct a 3D detection pipeline for point cloud data and as generic as possible. However, due to the sparse nature of the data -- samples from 2D manifolds in 3D space -- we face a major challenge when directly predicting bounding box parameters from scene points: a 3D object centroid can be far from any surface point thus hard to regress accurately in one step. To address the challenge, we propose VoteNet, an end-to-end 3D object detection network based on a synergy of deep point set networks and Hough voting. Our model achieves state-of-the-art 3D detection on two large datasets of real 3D scans, ScanNet and SUN RGB-D with a simple design, compact model size and high efficiency. Remarkably, VoteNet outperforms previous methods by using purely geometric information without relying on color images.

592 citations

Posted Content
TL;DR: In this article, an end-to-end dialog system based on memory networks is proposed for goal-oriented reservation systems, which can reach promising, yet imperfect, performance and learn to perform non-trivial operations.
Abstract: Traditional dialog systems used in goal-oriented applications require a lot of domain-specific handcrafting, which hinders scaling up to new domains. End-to-end dialog systems, in which all components are trained from the dialogs themselves, escape this limitation. But the encouraging success recently obtained in chit-chat dialog may not carry over to goal-oriented settings. This paper proposes a testbed to break down the strengths and shortcomings of end-to-end dialog systems in goal-oriented applications. Set in the context of restaurant reservation, our tasks require manipulating sentences and symbols, so as to properly conduct conversations, issue API calls and use the outputs of such calls. We show that an end-to-end dialog system based on Memory Networks can reach promising, yet imperfect, performance and learn to perform non-trivial operations. We confirm those results by comparing our system to a hand-crafted slot-filling baseline on data from the second Dialog State Tracking Challenge (Henderson et al., 2014a). We show similar result patterns on data extracted from an online concierge service.

589 citations


Authors

Showing all 7875 results

NameH-indexPapersCitations
Yoshua Bengio2021033420313
Xiang Zhang1541733117576
Jitendra Malik151493165087
Trevor Darrell148678181113
Christopher D. Manning138499147595
Robert W. Heath128104973171
Pieter Abbeel12658970911
Yann LeCun121369171211
Li Fei-Fei120420145574
Jon Kleinberg11744487865
Sergey Levine11565259769
Richard Szeliski11335972019
Sanjeev Kumar113132554386
Bruce Neal10856187213
Larry S. Davis10769349714
Network Information
Related Institutions (5)
Google
39.8K papers, 2.1M citations

98% related

Microsoft
86.9K papers, 4.1M citations

96% related

Adobe Systems
8K papers, 214.7K citations

94% related

Carnegie Mellon University
104.3K papers, 5.9M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
202237
20211,738
20202,017
20191,607
20181,229