scispace - formally typeset
Search or ask a question
Institution

Facebook

CompanyTel Aviv, Israel
About: Facebook is a company organization based out in Tel Aviv, Israel. It is known for research contribution in the topics: Computer science & Artificial neural network. The organization has 7856 authors who have published 10906 publications receiving 570123 citations. The organization is also known as: facebook.com & FB.


Papers
More filters
Posted Content
TL;DR: The authors proposed an adversarial training approach to train semantic segmentation models, which can detect and correct higher-order inconsistencies between ground truth segmentation maps and the ones produced by the segmentation net.
Abstract: Adversarial training has been shown to produce state of the art results for generative image modeling. In this paper we propose an adversarial training approach to train semantic segmentation models. We train a convolutional semantic segmentation network along with an adversarial network that discriminates segmentation maps coming either from the ground truth or from the segmentation network. The motivation for our approach is that it can detect and correct higher-order inconsistencies between ground truth segmentation maps and the ones produced by the segmentation net. Our experiments show that our adversarial training approach leads to improved accuracy on the Stanford Background and PASCAL VOC 2012 datasets.

539 citations

Proceedings ArticleDOI
07 Apr 2014
TL;DR: In this paper, a large sample of photo reshare cascades on Facebook was used to predict whether a cascade will continue to grow in the future, and they found that the relative growth of a cascade becomes more predictable as more of its reshares, that temporal and structural features are key predictors of cascade size, and that initially, breadth rather than depth in a cascade is a better indicator of larger cascades.
Abstract: On many social networking web sites such as Facebook and Twitter, resharing or reposting functionality allows users to share others' content with their own friends or followers. As content is reshared from user to user, large cascades of reshares can form. While a growing body of research has focused on analyzing and characterizing such cascades, a recent, parallel line of work has argued that the future trajectory of a cascade may be inherently unpredictable. In this work, we develop a framework for addressing cascade prediction problems. On a large sample of photo reshare cascades on Facebook, we find strong performance in predicting whether a cascade will continue to grow in the future. We find that the relative growth of a cascade becomes more predictable as we observe more of its reshares, that temporal and structural features are key predictors of cascade size, and that initially, breadth, rather than depth in a cascade is a better indicator of larger cascades. This prediction performance is robust in the sense that multiple distinct classes of features all achieve similar performance. We also discover that temporal features are predictive of a cascade's eventual shape. Observing independent cascades of the same content, we find that while these cascades differ greatly in size, we are still able to predict which ends up the largest.

530 citations

Proceedings Article
02 May 2016
TL;DR: In this article, the authors revisited both retrieval stages, namely initial search and re-ranking, by employing the same primitive information derived from the CNN, and built compact feature vectors that encode several image regions without the need to feed multiple inputs to the network.
Abstract: Recently, image representation built upon Convolutional Neural Network (CNN) has been shown to provide effective descriptors for image search, outperforming pre-CNN features as short-vector representations. Yet such models are not compatible with geometry-aware re-ranking methods and still outperformed, on some particular object retrieval benchmarks, by traditional image search systems relying on precise descriptor matching, geometric re-ranking, or query expansion. This work revisits both retrieval stages, namely initial search and re-ranking, by employing the same primitive information derived from the CNN. We build compact feature vectors that encode several image regions without the need to feed multiple inputs to the network. Furthermore, we extend integral images to handle max-pooling on convolutional layer activations, allowing us to efficiently localize matching objects. The resulting bounding box is finally used for image re-ranking. As a result, this paper significantly improves existing CNN-based recognition pipeline: We report for the first time results competing with traditional methods on the challenging Oxford5k and Paris6k datasets.

527 citations

Proceedings ArticleDOI
01 Jul 2017
TL;DR: A new, large-scale corpus of data records paired with descriptive documents is introduced, a series of extractive evaluation methods for analyzing performance are proposed, and baseline results are obtained using current neural generation methods.
Abstract: Recent neural models have shown significant progress on the problem of generating short descriptive texts conditioned on a small number of database records. In this work, we suggest a slightly more difficult data-to-text generation task, and investigate how effective current approaches are on this task. In particular, we introduce a new, large-scale corpus of data records paired with descriptive documents, propose a series of extractive evaluation methods for analyzing performance, and obtain baseline results using current neural generation methods. Experiments show that these models produce fluent text, but fail to convincingly approximate human-generated documents. Moreover, even templated baselines exceed the performance of these neural models on some metrics, though copy- and reconstruction-based extensions lead to noticeable improvements.

523 citations

Proceedings ArticleDOI
01 Feb 2018
TL;DR: The hardware and software infrastructure that supports machine learning at global scale is described, leveraging both GPU and CPU platforms for training and abundant CPU capacity for real-time inference.
Abstract: Machine learning sits at the core of many essential products and services at Facebook. This paper describes the hardware and software infrastructure that supports machine learning at global scale. Facebook's machine learning workloads are extremely diverse: services require many different types of models in practice. This diversity has implications at all layers in the system stack. In addition, a sizable fraction of all data stored at Facebook flows through machine learning pipelines, presenting significant challenges in delivering data to high-performance distributed training flows. Computational requirements are also intense, leveraging both GPU and CPU platforms for training and abundant CPU capacity for real-time inference. Addressing these and other emerging challenges continues to require diverse efforts that span machine learning algorithms, software, and hardware design.

523 citations


Authors

Showing all 7875 results

NameH-indexPapersCitations
Yoshua Bengio2021033420313
Xiang Zhang1541733117576
Jitendra Malik151493165087
Trevor Darrell148678181113
Christopher D. Manning138499147595
Robert W. Heath128104973171
Pieter Abbeel12658970911
Yann LeCun121369171211
Li Fei-Fei120420145574
Jon Kleinberg11744487865
Sergey Levine11565259769
Richard Szeliski11335972019
Sanjeev Kumar113132554386
Bruce Neal10856187213
Larry S. Davis10769349714
Network Information
Related Institutions (5)
Google
39.8K papers, 2.1M citations

98% related

Microsoft
86.9K papers, 4.1M citations

96% related

Adobe Systems
8K papers, 214.7K citations

94% related

Carnegie Mellon University
104.3K papers, 5.9M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
202237
20211,738
20202,017
20191,607
20181,229