scispace - formally typeset
Search or ask a question
Institution

Facebook

CompanyTel Aviv, Israel
About: Facebook is a company organization based out in Tel Aviv, Israel. It is known for research contribution in the topics: Artificial neural network & Language model. The organization has 7856 authors who have published 10906 publications receiving 570123 citations. The organization is also known as: facebook.com & FB.


Papers
More filters
Proceedings Article
02 Oct 2020
TL;DR: It is argued that an important aspect of contrastive learning, i.e., the effect of hard negatives, has so far been neglected and proposed hard negative mixing strategies at the feature level, that can be computed on-the-fly with a minimal computational overhead.
Abstract: Contrastive learning has become a key component of self-supervised learning approaches for computer vision. By learning to embed two augmented versions of the same image close to each other and to push the embeddings of different images apart, one can train highly transferable visual representations. As revealed by recent studies, heavy data augmentation and large sets of negatives are both crucial in learning such representations. At the same time, data mixing strategies either at the image or the feature level improve both supervised and semi-supervised learning by synthesizing novel examples, forcing networks to learn more robust features. In this paper, we argue that an important aspect of contrastive learning, i.e., the effect of hard negatives, has so far been neglected. To get more meaningful negative samples, current top contrastive self-supervised learning approaches either substantially increase the batch sizes, or keep very large memory banks; increasing the memory size, however, leads to diminishing returns in terms of performance. We therefore start by delving deeper into a top-performing framework and show evidence that harder negatives are needed to facilitate better and faster learning. Based on these observations, and motivated by the success of data mixing, we propose hard negative mixing strategies at the feature level, that can be computed on-the-fly with a minimal computational overhead. We exhaustively ablate our approach on linear classification, object detection and instance segmentation and show that employing our hard negative mixing procedure improves the quality of visual representations learned by a state-of-the-art self-supervised learning method.

311 citations

Proceedings ArticleDOI
01 Jul 2020
TL;DR: TaBERT is a pretrained LM that jointly learns representations for NL sentences and (semi-)structured tables that achieves new best results on the challenging weakly-supervised semantic parsing benchmark WikiTableQuestions, while performing competitively on the text-to-SQL dataset Spider.
Abstract: Recent years have witnessed the burgeoning of pretrained language models (LMs) for text-based natural language (NL) understanding tasks. Such models are typically trained on free-form NL text, hence may not be suitable for tasks like semantic parsing over structured data, which require reasoning over both free-form NL questions and structured tabular data (e.g., database tables). In this paper we present TaBERT, a pretrained LM that jointly learns representations for NL sentences and (semi-)structured tables. TaBERT is trained on a large corpus of 26 million tables and their English contexts. In experiments, neural semantic parsers using TaBERT as feature representation layers achieve new best results on the challenging weakly-supervised semantic parsing benchmark WikiTableQuestions, while performing competitively on the text-to-SQL dataset Spider.

310 citations

Patent
18 Aug 2008
TL;DR: In this paper, a social network website logs information about actions taken by members of the website and generates socially relevant ads for the member based on the actions logged for other members on the website to whom the member is connected (i.e., the member's online friends).
Abstract: A social networking website logs information about actions taken by members of the website. For a particular member of the website, the website generates socially relevant ads for the member based on the actions logged for other members on the website to whom the member is connected (i.e., the member's online friends). The advertiser associated with the social ad may compensate the social networking website for publishing the ad on the website. When presenting a member with a social ad, the website may optimize advertising revenue by selecting an ad from the received ads that will maximize the expected value of the social ad. The expected value may be computed according to a function that includes the member's affinity for the ad content and the bid amount. The technique is also applied for providing socially relevant information off the social networking website.

309 citations

Proceedings ArticleDOI
22 Jun 2013
TL;DR: LinkBench provides a realistic and challenging test for persistent storage of social and web service data, filling a gap in the available tools for researchers, developers and administrators.
Abstract: Database benchmarks are an important tool for database researchers and practitioners that ease the process of making informed comparisons between different database hardware, software and configurations. Large scale web services such as social networks are a major and growing database application area, but currently there are few benchmarks that accurately model web service workloads.In this paper we present a new synthetic benchmark called LinkBench. LinkBench is based on traces from production databases that store "social graph" data at Facebook, a major social network. We characterize the data and query workload in many dimensions, and use the insights gained to construct a realistic synthetic benchmark. LinkBench provides a realistic and challenging test for persistent storage of social and web service data, filling a gap in the available tools for researchers, developers and administrators.

309 citations

Posted Content
TL;DR: The authors unify distillation and privileged information into generalized distillation, a framework to learn from multiple machines and data representations, and demonstrate its efficacy on a variety of numerical simulations on both synthetic and real-world data.
Abstract: Distillation (Hinton et al., 2015) and privileged information (Vapnik & Izmailov, 2015) are two techniques that enable machines to learn from other machines. This paper unifies these two techniques into generalized distillation, a framework to learn from multiple machines and data representations. We provide theoretical and causal insight about the inner workings of generalized distillation, extend it to unsupervised, semisupervised and multitask learning scenarios, and illustrate its efficacy on a variety of numerical simulations on both synthetic and real-world data.

308 citations


Authors

Showing all 7875 results

NameH-indexPapersCitations
Yoshua Bengio2021033420313
Xiang Zhang1541733117576
Jitendra Malik151493165087
Trevor Darrell148678181113
Christopher D. Manning138499147595
Robert W. Heath128104973171
Pieter Abbeel12658970911
Yann LeCun121369171211
Li Fei-Fei120420145574
Jon Kleinberg11744487865
Sergey Levine11565259769
Richard Szeliski11335972019
Sanjeev Kumar113132554386
Bruce Neal10856187213
Larry S. Davis10769349714
Network Information
Related Institutions (5)
Google
39.8K papers, 2.1M citations

98% related

Microsoft
86.9K papers, 4.1M citations

96% related

Adobe Systems
8K papers, 214.7K citations

94% related

Carnegie Mellon University
104.3K papers, 5.9M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
202237
20211,738
20202,017
20191,607
20181,229