scispace - formally typeset
Search or ask a question
Institution

Facebook

CompanyTel Aviv, Israel
About: Facebook is a company organization based out in Tel Aviv, Israel. It is known for research contribution in the topics: Artificial neural network & Language model. The organization has 7856 authors who have published 10906 publications receiving 570123 citations. The organization is also known as: facebook.com & FB.


Papers
More filters
Patent
14 May 2012
TL;DR: In this article, the authors propose a method for maintaining access to information comprising nodes and edges, which includes receiving a request from a user corresponding to a first user node for a structured document corresponding to the first concept node, determining a first data set that identifies concept nodes connected by edges with user nodes that are each connected with both the first user nodes and the first node, and generating a score for each concept node in the data sets; selecting one or more concept nodes based on their scores as recommended nodes.
Abstract: In one embodiment, a method includes maintaining access to information comprising nodes and edges; receiving a request from a first user corresponding to a first user node for a structured document corresponding to a first concept node; determining a first data set that identifies concept nodes connected by edges with user nodes that are each connected by edges with both the first user node and the first concept node; determining a second data set that identifies concept nodes connected by edges with the first concept node and user nodes that are each connected to the first user node; generating a score for each concept node in the data sets; selecting one or more concept nodes based on their scores as recommended nodes; and transmitting to the client device the structured document and code executable by a client application to render node names or identifiers of the recommended nodes for display.

269 citations

Proceedings ArticleDOI
14 Jun 2020
TL;DR: This paper investigated the relationship between vision and language tasks by developing a large-scale, multi-task model, which culminates in a single model on 12 datasets from four broad categories of task including visual question answering, caption-based image retrieval, grounding referring expressions, and multimodal verification.
Abstract: Much of vision-and-language research focuses on a small but diverse set of independent tasks and supporting datasets often studied in isolation; however, the visually-grounded language understanding skills required for success at these tasks overlap significantly. In this work, we investigate these relationships between vision-and-language tasks by developing a large-scale, multi-task model. Our approach culminates in a single model on 12 datasets from four broad categories of task including visual question answering, caption-based image retrieval, grounding referring expressions, and multimodal verification. Compared to independently trained single-task models, this represents a reduction from approximately 3 billion parameters to 270 million while simultaneously improving performance by 2.05 points on average across tasks. We use our multi-task framework to perform in-depth analysis of the effect of joint training diverse tasks. Further, we show that finetuning task-specific models from our single multi-task model can lead to further improvements, achieving performance at or above the state-of-the-art.

267 citations

Posted Content
TL;DR: This work aims at facilitating research on 3D representation learning by selecting a suite of diverse datasets and tasks to measure the effect of unsupervised pre-training on a large source set of 3D scenes and achieving improvement over recent best results in segmentation and detection across 6 different benchmarks.
Abstract: Arguably one of the top success stories of deep learning is transfer learning. The finding that pre-training a network on a rich source set (eg., ImageNet) can help boost performance once fine-tuned on a usually much smaller target set, has been instrumental to many applications in language and vision. Yet, very little is known about its usefulness in 3D point cloud understanding. We see this as an opportunity considering the effort required for annotating data in 3D. In this work, we aim at facilitating research on 3D representation learning. Different from previous works, we focus on high-level scene understanding tasks. To this end, we select a suite of diverse datasets and tasks to measure the effect of unsupervised pre-training on a large source set of 3D scenes. Our findings are extremely encouraging: using a unified triplet of architecture, source dataset, and contrastive loss for pre-training, we achieve improvement over recent best results in segmentation and detection across 6 different benchmarks for indoor and outdoor, real and synthetic datasets -- demonstrating that the learned representation can generalize across domains. Furthermore, the improvement was similar to supervised pre-training, suggesting that future efforts should favor scaling data collection over more detailed annotation. We hope these findings will encourage more research on unsupervised pretext task design for 3D deep learning.

266 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: A link between the representation norm and the ability to discriminate in a target domain is found, which sheds lights on how deep convolutional networks represent faces.
Abstract: Scaling machine learning methods to very large datasets has attracted considerable attention in recent years, thanks to easy access to ubiquitous sensing and data from the web. We study face recognition and show that three distinct properties have surprising effects on the transferability of deep convolutional networks (CNN): (1) The bottleneck of the network serves as an important transfer learning regularizer, and (2) in contrast to the common wisdom, performance saturation may exist in CNN's (as the number of training samples grows); we propose a solution for alleviating this by replacing the naive random subsampling of the training set with a bootstrapping process. Moreover, (3) we find a link between the representation norm and the ability to discriminate in a target domain, which sheds lights on how such networks represent faces. Based on these discoveries, we are able to improve face recognition accuracy on the widely used LFW benchmark, both in the verification (1∶1) and identification (1∶N) protocols, and directly compare, for the first time, with the state of the art Commercially-Off-The-Shelf system and show a sizable leap in performance.

266 citations

Proceedings ArticleDOI
27 Oct 2019
TL;DR: This work proposes a new unsupervised approach which leverages self-supervision and clustering to capture complementary statistics from large-scale data and validates its approach on 96 million images from YFCC100M, achieving state-of-the-art results among unsuper supervised methods on standard benchmarks.
Abstract: Pre-training general-purpose visual features with convolutional neural networks without relying on annotations is a challenging and important task. Most recent efforts in unsupervised feature learning have focused on either small or highly curated datasets like ImageNet, whereas using uncurated raw datasets was found to decrease the feature quality when evaluated on a transfer task. Our goal is to bridge the performance gap between unsupervised methods trained on curated data, which are costly to obtain, and massive raw datasets that are easily available. To that effect, we propose a new unsupervised approach which leverages self-supervision and clustering to capture complementary statistics from large-scale data. We validate our approach on 96 million images from YFCC100M, achieving state-of-the-art results among unsupervised methods on standard benchmarks, which confirms the potential of unsupervised learning when only uncurated data are available. We also show that pre-training a supervised VGG-16 with our method achieves 74.9% top-1 classification accuracy on the validation set of ImageNet, which is an improvement of +0.8% over the same network trained from scratch. Our code is available at https://github.com/facebookresearch/DeeperCluster.

266 citations


Authors

Showing all 7875 results

NameH-indexPapersCitations
Yoshua Bengio2021033420313
Xiang Zhang1541733117576
Jitendra Malik151493165087
Trevor Darrell148678181113
Christopher D. Manning138499147595
Robert W. Heath128104973171
Pieter Abbeel12658970911
Yann LeCun121369171211
Li Fei-Fei120420145574
Jon Kleinberg11744487865
Sergey Levine11565259769
Richard Szeliski11335972019
Sanjeev Kumar113132554386
Bruce Neal10856187213
Larry S. Davis10769349714
Network Information
Related Institutions (5)
Google
39.8K papers, 2.1M citations

98% related

Microsoft
86.9K papers, 4.1M citations

96% related

Adobe Systems
8K papers, 214.7K citations

94% related

Carnegie Mellon University
104.3K papers, 5.9M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
202237
20211,738
20202,017
20191,607
20181,229