scispace - formally typeset
Search or ask a question
Institution

Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto

Education
About: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto is a based out in . It is known for research contribution in the topics: Population & Genus. The organization has 2143 authors who have published 3674 publications receiving 71071 citations. The organization is also known as: FFCLRP & FFCLRP-USP.


Papers
More filters
Journal ArticleDOI
TL;DR: The proposed method, using a lab-made SPME-LC interface, allowed the determination of tricyclic antidepressants in in plasma at therapeutic concentration levels.
Abstract: Solid-phase microextraction (SPME)‐liquid chromatography (LC) is used to analyze tricyclic antidepressant drugs desipramine, imipramine, nortriptyline, amitriptyline, and clomipramine (internal standard) in plasma samples. Extraction conditions are optimized using a 23 factorial design plus a central point to evaluate the influence of the time, temperature, and matrix pH. A Polydimethylsiloxane‐divinylbenzene (60-µm film thickness) fiber is selected after the assessment of different types of coating. The chromatographic separation is realized using a C 18 column (150 × 4.6 mm, 5-µm particles), ammonium acetate buffer (0.05 mol/L, pH 5.50)‐acetonitrile (55:45 v/v) with 0.1% of triethylamine as mobile phase and UV‐vis detection at 214 nm. Among the factorial design conditions evaluated, the best results are obtained at a pH 1 1.0, temperature of 30°C, and extraction time of 45 min. The proposed method, using a lab-made SPME‐LC interface, allowed the determination of tricyclic antidepressants in in plasma at therapeutic concentration levels.

42 citations

Journal ArticleDOI
TL;DR: A model in which defensins, acting in a dimeric form, are able to disrupt membranes is supported and shows that the individual structures of the HNPs are responsible for their different actions on microbes.
Abstract: The HNP-1, HNP-2, and HNP-3 defensins are human antimicrobial peptides produced in response to microbial invasion. Their properties are distinct, with a more potent action for HNP-3. In this study, the relationship between their structural dissimilarities and their different microbial actions was evaluated by molecular dynamics simulation. Structural determinants related to their intra- and intermolecular interactions were defined for each HNP using a simplified membrane model consisting of a water/n-hexane interface. The hydrophobic portion of the HNPs promotes their diffusion to the interface with a concomitant, slight change in the structure induced by the intermolecular electrostatic interactions between the HPN molecules and the interface. As a consequence, different orientations are probably adopted by the HNPs at the interface, which may explain their different actions. The interaction of HNP-1 and HNP-2 with the surfaces was also studied using Langmuir monolayers as a biomimetic system. It was found that peptides adsorb rapidly at n-hexane/water interfaces as well as at phospholipid Langmuir monolayers but not at the air/liquid interface. This reveals that the presence of an organic phase is required for the exposure of the hydrophobic groups of the peptides. In addition, adsorption kinetics and surface pressure-area isotherms for Langmuir monolayers suggested that the lipid-peptide interaction is strongly influenced by the monolayer electrical charge and packing, depending also on the HPN structure. This study supports a model in which defensins, acting in a dimeric form, are able to disrupt membranes. The model also shows that the individual structures of the HNPs are responsible for their different actions on microbes.

42 citations

Journal ArticleDOI
TL;DR: A tentative of retrospective dosimetry was performed, indicating that the method is feasible only for low level exposure (below 0.5Gy), while for higher doses there is a need to apply appropriate correction factors, which take into consideration mainly the persistence of chromosomal translocations along with time.
Abstract: Fluorescence in situ hybridization (FISH) is a powerful method largely used for detecting chromosomal rearrangements, translocations in particular, which are important biomarkers for dose assessment in case of human exposure to ionizing radiation. To test the possibility of using the translocation analysis by FISH-painting method in retrospective dose assessment, we carried out in vitro experiments in irradiated human lymphocytes, in parallel with the analysis of translocations in lymphocytes from 10 individuals, who were exposed to 137 cesium in the Goiânia (Brazil) accident (samples collected 10 years after exposure). The in vitro dose–response curve for the genomic translocation frequencies (FGs) fits a linear quadratic model, according to the equation: Y =0.0243 X 2 +0.0556 X . The FG values were also calculated for the individuals exposed to 137 cesium , ranging from 0.58 to 5.91 per 100 cells, and the doses were estimated and compared with the results obtained by dicentric analysis soon after the accident, taking the opportunity to test the validity of translocation analysis in retrospective biodosimetry. A tentative of retrospective dosimetry was performed, indicating that the method is feasible only for low level exposure (below 0.5 Gy), while for higher doses there is a need to apply appropriate correction factors, which take into consideration mainly the persistence of chromosomal translocations along with time, and the influence of endogenous and exogenous factors determining the inter-individual variability in the cellular responses to radiation.

42 citations

Journal ArticleDOI
TL;DR: The developed method enabled successful analysis of the target drugs in plasma samples obtained from 51 schizophrenic patients and revealed altered plasma concentrations of the analyzed drugs resulted from pharmacokinetic interactions among the medications prescribed to treat schizophrenia.
Abstract: This work describes the development of a simple, sensitive and selective method based on high-performance liquid chromatography coupled to tandem mass spectrometry (LC-MS-MS) to determine antipsychotics (olanzapine, quetiapine, clozapine, haloperidol and chlorpromazine) along with antidepressants (mirtazapine, paroxetine, citalopram, sertraline, imipramine, clomipramine and fluoxetine), anticonvulsants (carbamazepine and lamotrigine) and anxiolytics (diazepam and clonazepam) in plasma samples obtained from schizophrenic patients. The samples were prepared by protein precipitation. The target drugs were separated on an XSelect SCH C18 column (100 mm × 2.1 mm × 2.5 µm) within 8.0 min by means of gradient elution. The drugs were then detected on a quadrupole tandem mass spectrometer equipped with an electrospray ionization source, operating in the multiple reactions monitoring mode and in the positive ionization mode. The LC-MS-MS method was linear range from subtherapeutic to toxic concentrations with lower limit of quantification values ranged from 0.2 to 5.0 ng mL(-1), precision with coefficient of variation values lower than 12%, and accuracy ranged from 90 to 108%. The developed method enabled successful analysis of the target drugs in plasma samples obtained from 51 schizophrenic patients. Therapeutic drug monitoring revealed that many of the evaluated schizophrenic patients presented altered plasma concentrations of the analyzed drugs. These altered concentrations resulted from pharmacokinetic interactions among the medications prescribed to treat schizophrenia.

42 citations


Authors

Showing all 2195 results

Network Information
Related Institutions (5)
Federal University of Rio de Janeiro
89.1K papers, 1.5M citations

90% related

State University of Campinas
104.6K papers, 1.8M citations

89% related

University of São Paulo
272.3K papers, 5.1M citations

89% related

Academy of Sciences of the Czech Republic
71K papers, 1.8M citations

88% related

University of Montpellier
53.8K papers, 1.6M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202291
2021245
2020248
2019234
2018245