scispace - formally typeset
Search or ask a question
Institution

Ford Motor Company

CompanyDearborn, Michigan, United States
About: Ford Motor Company is a company organization based out in Dearborn, Michigan, United States. It is known for research contribution in the topics: Internal combustion engine & Clutch. The organization has 36123 authors who have published 51450 publications receiving 855200 citations. The organization is also known as: Ford Motor & Ford Motor Corporation.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the elastic constants C 44, 1 2 (C 11 −C 12 ) and 1 2(C 11 +C 12 +2C 44 ) have been measured in nickel and an Fe-30% Ni alloy through their respective Curie temperatures at high enough applied magnetic fields to eliminate the ordinary Δ E effect associated with domain wall motion.

298 citations

Journal ArticleDOI
TL;DR: In the proposed approach, the Radon transform is first employed to detect the principal direction of the texture and a wavelet transform is applied to the rotated image to extract texture features, providing a features space with small intraclass variability and, therefore, good separation between different classes.
Abstract: This paper presents a new approach to rotation invariant texture classification. The proposed approach benefits from the fact that most of the texture patterns either have directionality (anisotropic textures) or are not with a specific direction (isotropic textures). The wavelet energy features of the directional textures change significantly when the image is rotated. However, for the isotropic images, the wavelet features are not sensitive to rotation. Therefore, for the directional textures, it is essential to calculate the wavelet features along a specific direction. In the proposed approach, the Radon transform is first employed to detect the principal direction of the texture. Then, the texture is rotated to place its principal direction at 0 degrees. A wavelet transform is applied to the rotated image to extract texture features. This approach provides a features space with small intraclass variability and, therefore, good separation between different classes. The performance of the method is evaluated using three texture sets. Experimental results show the superiority of the proposed approach compared with some existing methods.

297 citations

Journal ArticleDOI
TL;DR: Temporal profile of various growth factors within cultures of human MSCs (hMSCs) conditioned with cerebral tissue extract from TBI suggest that transplanted hMSCs may provide therapeutic benefit via a responsive secretion of an array of growth factors that can foster neuroprotection and angiogenesis.
Abstract: Treatment of traumatic brain injury (TBI) with bone marrow stromal cells (MSCs) improves functional outcome in the rat. However, the specific mechanisms by which introduced MSCs provide benefit remain to be elucidated. Currently, the ability of therapeutically transplanted MSCs to replace injured parenchymal CNS tissue appears limited at best. Tissue replacement, however, is not the only possible compensatory avenue in cell transplantation therapy. Various growth factors have been shown to mediate the repair and replacement of damaged tissue, so trophic support provided by transplanted MSCs may play a role in the treatment of damaged tissue. We therefore investigated the temporal profile of various growth factors, brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and hepatocyte growth factor (HGF), within cultures of human MSCs (hMSCs) conditioned with cerebral tissue extract from TBI. hMSCs were cultured with TBI extracts of rat brain in vitro and quantitative sandwich enzyme-linked immunosorbent assays (ELISAs) were performed. TBI-conditioned hMSCs cultures demonstrated a time-dependent increase of BDNF, NGF, VEGF, and HGF, indicating a responsive production of these growth factors by the hMSCs. The ELISA data suggest that transplanted hMSCs may provide therapeutic benefit via a responsive secretion of an array of growth factors that can foster neuroprotection and angiogenesis.

297 citations

Journal ArticleDOI
TL;DR: In this article, the authors incorporated magnetorheological elastomers in a simple resonant structure called a tuned absorber to measure the complex dynamic shear moduli of these materials at high frequencies.
Abstract: A host of fascinating and useful magnetic phenomena are found in composites containing magnetizable particles in viscoelastic solids. Embedding magnetically soft iron particles in natural rubber produces a class of magnetostrictive composites sometimes termed magnetorheological (MR) elastomers. We have previously shown that these materials can exhibit viscoelastic moduli that increase substantially in an applied magnetic field. In this paper, we incorporate MR elastomers in a simple resonant structure called a tuned absorber to measure the complex dynamic shear moduli of these materials at high frequencies. We find that the fluid-induced modulus increase in MR elastomers is substantial even at kilohertz mechanical frequencies. As in previous measurements at low frequencies, the moduli are generally found to decrease with strain amplitude. We also report preliminary measurements of the relatively large elongation of these materials in applied magnetic fields.

297 citations

Journal ArticleDOI
TL;DR: It is suggested that exogenous NO enhances angiogenesis in ischemic brain, which is mediated by the NO/cGMP pathway.
Abstract: We investigated the effects of NO on angiogenesis and the synthesis of vascular endothelial growth factor (VEGF) in a model of focal embolic cerebral ischemia in the rat. Compared with control rats, systemic administration of an NO donor, DETANONOate, to rats 24 hours after stroke significantly enlarged vascular perimeters and increased the number of proliferated cerebral endothelial cells and the numbers of newly generated vessels in the ischemic boundary regions, as evaluated by 3-dimensional laser scanning confocal microscopy. Treatment with DETANONOate significantly increased VEGF levels in the ischemic boundary regions as measured by ELISA. A capillary-like tube formation assay was used to investigate whether DETANONOate increases angiogenesis in ischemic brain via activation of soluble guanylate cyclase. DETANONOate-induced capillary-like tube formation was completely inhibited by a soluble guanylate cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one (ODQ). Blocking VEGF activity by a neutralized antibody against VEGF receptor 2 significantly attenuated DETANONOate-induced capillary-like tube formation. Moreover, systemic administration of a phosphodiesterase type 5 inhibitor (Sildenafil) to rats 24 hours after stroke significantly increased angiogenesis in the ischemic boundary regions. Sildenafil and an analog of cyclic guanosine monophosphate (cGMP) also induced capillary-like tube formation. These findings suggest that exogenous NO enhances angiogenesis in ischemic brain, which is mediated by the NO/cGMP pathway. Furthermore, our data suggest that NO, in part via VEGF, may enhance angiogenesis in ischemic brain.

296 citations


Authors

Showing all 36140 results

NameH-indexPapersCitations
Anil K. Jain1831016192151
Markus Antonietti1761068127235
Christopher M. Dobson1501008105475
Jack Hirsh14673486332
Galen D. Stucky144958101796
Federico Capasso134118976957
Peter Stone130122979713
Gerald R. Crabtree12837160973
Douglas A. Lauffenburger12270555326
Abass Alavi113129856672
Mark E. Davis11356855334
Keith Beven11051461705
Naomi Breslau10725442029
Fei Wang107182453587
Jun Yang107209055257
Network Information
Related Institutions (5)
University of Michigan
342.3K papers, 17.6M citations

86% related

Pennsylvania State University
196.8K papers, 8.3M citations

84% related

University of California, Irvine
113.6K papers, 5.5M citations

84% related

Northwestern University
188.8K papers, 9.4M citations

83% related

University of Utah
124K papers, 5.2M citations

83% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202237
2021766
20201,397
20192,195
20181,945
20171,995