scispace - formally typeset
Search or ask a question

Showing papers by "Forest Research Institute published in 1998"


Journal ArticleDOI
TL;DR: In this article, the impact of nitrogen (N) deposition was studied by comparing N fluxes, N concentrations and N pool sizes in vegetation and soil in five coniferous forest stands at the NITREX sites: Gardsjon (GD), Sweden, Klosterhede (KH), Denmark, Aber (AB), Wales, UK, Speuld (SP, the Netherlands, and Ysselsteyn (YS), the Netherlands.

601 citations


Journal ArticleDOI
TL;DR: The high degree of polymorphism and heterozygosity observed in RAMS markers suggests that the amount of genetic variation within this fungus is considerable and supports the idea of P. gigantea being a true biological species consisting of a single intersterility group.

177 citations


Journal ArticleDOI
TL;DR: In this paper, a series of coniferous forests across a European nitrogen deposition gradient within the NITREX project provided an opportunity to test the relationships between nitrogen supply from atmospheric deposition and the relative 15N-enrichment of vegetation to soil, across a large geographical area.

175 citations


Journal ArticleDOI
TL;DR: The NITREX project as mentioned in this paper investigated the effect of atmospheric nitrogen (N) deposition in coniferous forests and found that the status and dynamics of the forest floor are key components in determining the response of forests to altered N inputs.
Abstract: The NITREX project, which encompasses seven ecosystem-scale experiments in coniferous forests at the plot or catchment level in northwestern Europe, investigates the effect of atmospheric nitrogen (N) deposition in coniferous forests. The common factor in all of the experiments is the experimentally controlled change in N input over a period of 4–5 years. Results indicate that the status and dynamics of the forest floor are key components in determining the response of forests to altered N inputs. An empirical relationship between the carbon–nitrogen (C/N) ratio of the forest floor and retention of incoming N provides a simply measured tool through which the likely timing and consequences of changes in atmospheric N deposition for fresh waters may be predicted. In the terrestrial ecosystem, a 50% increase in tree growth is observed following the experimental reduction of N and sulfur inputs in a highly N-saturated site, illustrating the damaging effects of acidifying pollutants to tree health in some locations. Few biotic responses to the experimental treatments were observed in other NITREX sites, but the rapid response of water quality to changes in N deposition, and the link to acidification in sensitive areas, highlight the need for N-emission controls, irrespective of the long-term effects on tree health. The observed changes in ecosystem function in response to the experimental treatments have been considered within the framework of the current critical-load approach and thus contribute to the formulation of environmental policy.

173 citations


Journal ArticleDOI
TL;DR: It is suggested that mast cells, in addition to macrophages, contribute to matrix degradation and, hence, to progression of coronary syndromes.

165 citations


Journal ArticleDOI
TL;DR: In this paper, field-scale 15N tracer experiments have been carried out in coniferous forests and it was found that about 10−30% of added 15N was taken up by the trees and 10−15% was retained in the mineral soil.

156 citations


Journal ArticleDOI
TL;DR: Data show that polyphenolic parenchyma cells are active in synthesis, storage, and modification of phenolics in response to wounding, providing an important site of constitutive and inducible defenses.
Abstract: The bark anatomy of Norway spruce clones that were resistant or susceptible to Ceratocystis polonica, a bark-beetle-vectored fungal pathogen, was compared. The major difference concerned the axial parenchyma cells, called polyphenolic parenchyma (PP cells) because of their vacuolar deposits. The phenolic nature of the deposits was indicated by autofluorescence under blue light, and immunocytochemical studies demonstrating PP cells are enriched in phenylalanine ammonia lyase (EC 4.3.1.5), a key enzyme in phenolic synthesis. Susceptible-clone PP cells occurred as single rows filled with dense deposits. The resistant clone had 40% more PP cells, which occurred in rows two cells thick plus as individual cells scattered among the sieve cells and had lighter deposits. Trees inoculated with fungus were analyzed but a distinct fungal response could not be separated from the general wound response. In the resistant clone, phenolic bodies were reduced in size and density or disappeared completely 12 d after wounding, and PP cell size increased. The susceptible-clone phenolics and cell size changed only slightly. These data show that PP cells are active in synthesis, storage, and modification of phenolics in response to wounding, providing an important site of constitutive and inducible defenses.

153 citations


Journal ArticleDOI
TL;DR: A biolistic particle delivery system was used to genetically transform embryogenic tissue of Pinus radiata, using a uidA reporter gene under the control of either the tandem CaMV 35S or the artificial Emu promoter, and the npt II selectable marker controlled by the CaMv 35S promoter.
Abstract: A biolistic particle delivery system was used to genetically transform embryogenic tissue of Pinus radiata. The introduced DNA contained a uidA reporter gene under the control of either the tandem CaMV 35S or the artificial Emu promoter, and the npt II selectable marker controlled by the CaMV 35S promoter. The average number of stable, geneticin-resistant lines recovered was 0.5 per 200 mg fresh weight bombarded tissue. Expression of the uidA reporter gene was detected histochemically and fluorimetrically in transformed embryogenic tissue and in derived mature somatic embryos and regenerated plants. The integration of uidA and npt II genes into the Pinus radiata genome was demonstrated using PCR amplification of the inserts and Southern hybridisation analysis. The expression of both genes in transformed tissue was confirmed by Northern hybridisation analysis. More than 150 transgenic Pinus radiata plants were produced from 20 independent transformation experiments with four different embryogenic clones.

153 citations


Journal ArticleDOI
TL;DR: The NITREX project as discussed by the authors evaluated the ecological effects of excess N with respect to changes in vegetation and soil biota in a series of experiments along a N gradient across Europe.

146 citations


Journal ArticleDOI
TL;DR: In this article, the authors reviewed the nanostructure of the cell wall of softwoods and discussed the probable relationships between microfibril directions in the secondary cell wall layers and potential threats to the survival of trees such as excessive vibration and crack propagation.
Abstract: Trees are large engineering structures that have to withstand major wind and static forces and translocate considerable volumes of water. Natural selection has over millions of years optimised tree structure to maximise survival of the species. Naturally this process does not necessarily optimise the properties of the resultant lumber such as hardness, stiffness and strength. Such wood properties can now be improved by genetic engineering and tree breeding. If this is done without understanding the contribution of wood structure to tree survival, this can lead to increased susceptibility to windthrow, splitting and branch damage in the standing tree and internal checking and collapse during wood drying. As a first step to quantifying these potential problems this paper reviews latest findings on the nanostructure of the cell wall of softwoods and then discusses the probable relationships between microfibril directions in the secondary cell wall layers and potential threats to the survival of trees such as excessive vibration and crack propagation.

120 citations


Journal ArticleDOI
TL;DR: Two loci had null alleles and one locus had a high frequency of non-parental alleles, suggesting a high mutation rate, and both single and multi-copy microsatellites exhibited co-dominant inheritance and Mendelian segregation.
Abstract: Dinucleotide microsatellites were isolated from Pinus radiata using both a standard genomic library and libraries enriched for microsatellites. Locus-specific primers were designed to amplify 43 unique microsatellites. Thirty two of these loci had interpretable PCR patterns, 11 of which were polymorphic in a screen of 19 P. radiata individuals; all 11 polymorphic loci contained at least 17 repeats in the sequenced plasmid. Six of the eleven primer pairs amplified multiple fragments per individual (3–8), suggesting that these loci were present in multiple copies in the genome. Genotyping a 48-tree P. radiata production population with seven of the most polymorphic microsatellites revealed an average of 17 bands per locus (the multi-copy microsatellites were treated as one locus). When tested on known pedigrees, both single and multi-copy microsatellites exhibited co-dominant inheritance and Mendelian segregation. Two loci had null alleles and one locus had a high frequency of non-parental alleles, suggesting a high mutation rate. Eight of these microsatellites, including five multi-copy loci, were placed on a partially constructed P. radiata genetic map. Four of the five multi-copy microsatellites had two or more sets of alleles that mapped to the same locus, and the fifth mapped to two unlinked loci. All seven tested primer pairs amplified PCR products from other species of hard pine, three amplified products from soft-pine species, and one amplified bands in other conifers.

Journal ArticleDOI
01 Nov 1998-Planta
TL;DR: Cl cloning of a different Pinusradiata FLO/LFY-l ike cDNA, PRFLL, in a conifer species Pinus radiata is reported, consistent withPRFLL being involved in determination of the male cone primordium identity.
Abstract: In angiosperms, the formation of the flower meristem is controlled by partially redundant flower meristem identity genes of which FLORICAULA (FLO)/LEAFY (LFY ) plays a central role. It is not known whether formation of reproductive organs of pre-angiosperm species is similarly regulated. Recently, a FLO/LFY-like cDNA, NEEDLY (NLY ), has been cloned in a conifer species Pinus radiata (D. Don). Here we report cloning of a different P inus radiata F LO/L FY-l ike cDNA, PRFLL. PRFLL had two large regions of high similarity to angiosperm FLO/LFY orthologues: amino acids 61–126 and 247–406 (50% and 81% identity, and 75% and 88% similarity, respectively, to LFY) and shorter regions of local similarity. Overall identity was 53% to LFY and 61% to NLY. Phylogenetic analysis of deduced protein sequences including partial LFY-like sequences from Pseudotsuga menziesii indicated that conifer proteins constituted a separate clade that could be divided into two groups represented by NLY and PRFLL. In contrast to angiosperms, both conifers had two paralogous proteins resembling LFY. Northern hybridisation analysis revealed expression of PRFLL in vegetative buds of juvenile, adolescent and mature trees. The transcript was not detected in vascular cambium, roots or secondary needles. To follow PRFLL expression during the early stages of cone development we analysed a temporal series of buds containing cone primordia, and developing cones, using Northern hybridisation and confocal microscopy in parallel. PRFLL mRNA was detected in buds from dominant and subordinate branches, in which cone and shoot primordia develop, and in developing male cones but not in developing female cones. Expression was particularly high in buds containing axillary primordia prior to their differentiation as male cone primordia. This is consistent with PRFLL being involved in determination of the male cone primordium identity.

Journal ArticleDOI
TL;DR: According to microscopical observations, the cells that retained their viability and regrowth ability after cryopreservation were the embryonal head cells, as well as some elliptic suspensor cells close to the embryo head cell area.
Abstract: The aim of the study was to develop an effective cryopreservation method for Scots pine (Pinus sylvestris L.) embryogenic cultures. Altogether nine cell lines derived from three mother trees were cryopreserved after cold hardening using dimethylsulfoxide or two different mixtures of polyethyleneglycol 6000, glucose and dimethylsulfoxide as cryoprotectants. Seventy-eight percent of the cell lines remained viable after cryostorage, the best cryoprotectant treatment being 10% polyethyleneglycol 6000, 10% glucose, and 10% dimethylsulfoxide in water. This treatment resulted in significantly better regrowth of the embryogenic cultures than with the other cryoprotectants or with the controls. According to microscopical observations, the cells that retained their viability and regrowth ability after cryopreservation were the embryonal head cells, as well as some elliptic suspensor cells close to the embryonal head cell area. When proliferation growth of the frozen cultures had started, their morphological appearance was the same as the non-frozen cultures. In addition, the RAPD assays suggested that the cryostorage treatment used here preserved the genetic fidelity of the Scots pine embryogenic cultures.

Journal ArticleDOI
TL;DR: In this article, the effects of a land use change from grassland to coniferous plantation forestry (Pseudotsuga menzieii [Douglas fir]; Pinus radiata [radiata pine]) on soil acidity and organic matter were assessed at two sites in New Zealand.

Journal ArticleDOI
TL;DR: Cynipid occurrences offer information helpful to resolving some aspects of oak systematics, and collaborative efforts between taxonomic botanists and entomologists will be useful in resolving a variety of plant and insect systematic problems.
Abstract: Field surveys of cynipid gall-inducer occurrences on Quercus species were conducted in Florida, North Carolina, and Pennsylvania, USA. All cynipids demonstrated strong host species and organ fidelity. One result of this specialization is effective niche partitioning among cynipids. The host-association patterns of these specialist herbivores should reflect similarities among oaks, thus we clustered oak species according to their cynipid distributions. Cynipids distinguished small differences among their hosts. A dendrogram of oak species based on cynipid distributions was largely congruent with botanical arrangernents. Cynipid occurrences offer information helpful to resolving some aspects of oak systematics. Collaborative efforts between taxonomic botanists and entomologists will be useful in resolving a variety of plant and insect systematic problems.

Journal ArticleDOI
TL;DR: The study showed that levels of IT and ET were not affected by alternating intensity exercise to fatigue, suggesting that IT andET in human Sol, Gast and Tib muscles do not contribute significantly to the energy turnover during this type of exercise.
Abstract: 1. The main purpose of this study was to evaluate non-invasively with magnetic resonance spectroscopy (1H-MRS) changes in the concentrations of intracellular (IT) and extracellular (between muscle fibres) triglycerides (ET) in skeletal muscles of trained males (age range: 24-38 years) during two standard exercise protocols of alternating velocities. 2. Protocol 1 consisted of locomotion in a shuttle manner between two lines 30 m apart at four different velocities (1, 2, 3, and 4 m s-1) which were alternated every minute in a standard routine for 90 min, whereas Protocol 2 included locomotion between two lines 20 m apart at only three velocities (2, 2.7 and 4 m s-1) until volitional exhaustion. The heart rate during both protocols fluctuated between 140 and 200 beats min-1. 3. Using pre-exercise muscle water to quantify individual total creatine (TCr) that was utilized as an internal standard and assuming that TCr does not change during exercise, subjects' mean IT and ET concentrations in soleus (Sol) muscle before Protocol 1 (n = 8) were 45.8 +/- 4.8 mmol (kg dry weight)-1 (mean +/- S.E.M.) and 93.1 +/- 14.1 mmol (kg dry weight)-1, respectively. After the exercise, the concentrations of IT and ET were not significantly different from the values at rest. Before Protocol 2 (n = 4), IT concentrations in Sol, gastrocnemius (Gast) and tibialis (Tib) muscles were 46.4 +/- 13.6, 35.0 +/- 12.1 and 23.1 +/- 4.8 mmol (kg dry weight)-1, respectively, and were not affected by the exhaustive exercise. The ET concentrations in Sol, Gast and Tib were 136.4 +/- 38.1, 175.3 +/- 86.5 and 79.3 +/- 20.0 mmol (kg dry weight)-1 respectively, and they did not change significantly after exhaustion. 4. The study showed that levels of IT and ET were not affected by alternating intensity exercise to fatigue. This suggests that IT and ET in human Sol, Gast and Tib muscles do not contribute significantly to the energy turnover during this type of exercise. Energy for this type of muscle contraction may arise primarily from muscle phosphocreatine (PCr) and glycogen breakdown, circulating glucose and fatty acids from triglycerides other than those encountered within and between muscle cells.

Journal ArticleDOI
TL;DR: Modelling of the effects of CO2 enrichment on photosynthesis and ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco) in current and 1-year-old needles on the same branch shows that enhancement of photosynthesis continues to occur in needles after 4 years’ exposure to elevated CO2 concentrations.
Abstract: The effects of CO2 enrichment on photosynthesis and ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco) in current year and 1-year-old needles on the same branch were studied on Pinus radiata D. Don. trees growing for 4 years in large, open-top chambers at ambient (36 Pa) and elevated (65 Pa) CO2 partial pressures. At this age trees were 3·5–4 m tall. Measurements made late in the growing cycle (March) showed that photosynthetic rates at the growth CO2 concentration [(pCO2)a] were lower in 1-year-old needles of trees grown at elevated CO2 concentrations than in those of trees grown at ambient (pCO2)a. At elevated CO2 concentrations Vcmax (maximum carboxylation rate) was reduced by 13% and Jmax (RuBP regeneration capacity mediated by maximum electron transport rate) by 17%. This corresponded with photosynthetic rates at the growth (pCO2)a of 4·68 ± 0·41 μmol m–2 s–1 and 6·15 ± 0·46 μmol m–2 s–1 at 36 and 65 Pa, respectively (an enhancement of 31%). In current year needles photosynthetic rates at the growth (pCO2)a were 6·2 ± 0·72 μmol m–2 s–1 at 36 Pa and 10·15 ± 0·64 μmol m–2 s–1 at 65 Pa (an enhancement of 63%). The smaller enhancement of photosynthesis in 1-year-old needles at 65 Pa was accompanied by a reduction in Rubisco activity (39%) and content (40%) compared with that at 36 Pa. Starch and sugar concentrations in 1-year-old needles were not significantly different in the CO2 treatments. There was no evidence in biochemical parameters for down-regulation at elevated (pCO2)a in fully fexpanded needles of the current year cohort. These data show that enhancement of photosynthesis continues to occur in needles after 4 years’ exposure to elevated CO2 concentrations. Photosynthetic acclimation reduces the degree of this enhancement, but only in needles after 1 year of growth. Thus, responses to elevated CO2 concentration change during the lifetime of needles, and acclimation may not be apparent in current year needles. This transitory effect is most probably attributable to the effects of developmental stage and proximity to actively growing shoots on sink strength for carbohydrates. The implications of such age-dependent responses are that older trees, in which the contribution of older needles to the photosynthetic biomass is greater than in younger trees, may become progressively more acclimated to elevated CO2 concentration.

Journal ArticleDOI
TL;DR: This result suggests that the chromosome number changed from x = 11 to x = 7 after Dipterocarpus branched in the latter cluster, and other evolutionary changes of morphological characters are also discussed.

Journal ArticleDOI
TL;DR: In this paper, the three dimensional distribution of intercepted radiation, intercellular CO2 concentration (Ci) and late summer needle nitrogen (N) concentration were determined at the tips of all 54 branches in a 6·2m-tall Pinus radiata D. Don tree growing in a New Zealand plantation.
Abstract: The three dimensional distribution of intercepted radiation, intercellular CO2 concentration (Ci) and late summer needle nitrogen (N) concentration were determined at the tips of all 54 branches in a 6·2-m-tall Pinus radiata D. Don tree growing in a New Zealand plantation. Measurements included above- and below-canopy irradiance, leaf stable carbon isotopic composition (δ13C) and tree canopy architecture. The radiation absorption component of the model, MAESTRO, was tested on site and then used to determine the branch tip distribution of intercepted radiation. We hypothesized that in branch tip needles: (i) the allocation of nitrogen and other nutrients would be closely associated with the distribution of intercepted radiation, reflecting carbon gain optimization theory, and (ii) Ci would predominantly reflect changes in photosynthetic rate (A) rather than stomatal conductance (gs), indicating that the increase in A for a given increase in N concentration was larger than the corresponding increase in gs. Needle nitrogen concentration was poorly related to intercepted radiation, regardless of the period over which the latter was calculated. At a given height, there was a large azimuthal variation in intercepted radiation but N concentration was remarkably uniform around the tree canopy. There was, however, a linear and positive correspondence between N concentration and δ13C and needle height above ground (r2 = 0·73 and 0·68, respectively). The very strong linear correspondence between N concentration and Ci (r2 = 0·71) was interpreted, using gas exchange measurements, as supporting our second hypothesis. Recognizing the strong apical control in P. radiata and possible effects of leaf nitrogen storage in an evergreen species, we propose that the tree leader must have constituted a very strong carbon sink throughout the growing season, and that the proximity of branch tip needles to the leader affected their photosynthetic capacity and nutrient concentration, independent of intercepted radiation. This implies an integrated internal determination of resource allocation within the tree and challenges the current convention that resources are optimally distributed according to the profile of intercepted radiation.

Journal ArticleDOI
TL;DR: The contribution of the extramatrical mycelium to N and P nutrition of mycorrhizal Norway spruce (Picea abies (L.) Karst.
Abstract: The contribution of the extramatrical mycelium to N and P nutrition of mycorrhizal Norway spruce (Picea abies (L.) Karst.) was investigated. Seedlings either inoculated with Paxillus involutus (Batsch) Fr. or non-mycorrhizal were grown in a two compartment sand culture system where hyphae were separated from roots by a 45 μm nylon net. Nutrient solution of the hyphal compartment contained either 1.8 mm NH4+ and 0.18 mm H2PO4− or no N and P. Aluminium added to the hyphal compartment as a tracer of mass flow was not detected in the plant compartment, indicating that measurements of N and P transfer by the mycelium were not biased by solute movement across the nylon net.The addition of N and P to the hyphal compartment markedly increased dry weight, N and P concentration and N and P content of mycorrhizal plants. Calculating uptake from the difference in input and output of nutrient in solution confirmed a hyphal contribution of 73% and 76% to total N and P uptake, respectively. Hyphal growth was increased at the site of nutrient solution input.

Journal ArticleDOI
TL;DR: There was a significant interaction of drought and N effects on reduction of the mycorrhizal colonization and only Cenococcum geophilum showed a significant change.
Abstract: Effects of N addition and drought on ectomycorrhizae of Norway spruce trees were investigated in an outdoor pot lysimeter study. Three levels of N were applied as ammonium nitrate in irrigation water for five years; ambient rainwater (N0) and 5 (N5) and 15 (N15) times this N concentration. Mean annual N addition during the five years corresponded to 5, 27 and 82 kg·ha-1·y-1 for the N0, N5 and N15 treatments, respectively. During the third and fifth growth seasons two levels (lengths) of drought were artificially induced in addition to a watered control. Soil cores taken from each pot lysimeter were analyzed for mycorrhizal colonization and ectomycorrhizae were categorized according to macroscopic morphology. Drought decreased mycorrhizal colonization significantly. There was a significant interaction of drought and N effects on reduction of the mycorrhizal colonization. Although all of the mycorrhiza types were influenced by drought, only Cenococcum geophilum showed a significant change. N treatment alone did not show any significant effect either on mycorrhizal colonization or mycorrhizal types.

Journal ArticleDOI
TL;DR: In this article, carbon and phosphorus fluxes were determined for forest floor samples from three Pinus radiata plots which had received no P (Control), 62.5 kg P ha-1 (Low P) and 125 ǫ kg P ha −1 (High P) 20 years before sampling.
Abstract: Information on the mineralization of inorganic phosphate (Pi) from organically bound P (Po) during decomposition of forest floor and soil organic matter is vital for understanding P supply in forest ecosystems. Carbon (C) and phosphorus (P) fluxes were determined for forest floor samples from three Pinus radiata plots which had received no P (Control), 62.5 kg P ha–1 (Low P) and 125 kg P ha–1 (High P) 20 years before sampling. The P concentration of the forest floor samples had increased with fertilizer application, and the C:P ratio ranged between 585 and 1465. During a 9-week laboratory incubation 8.2–19.0% of the forest floor C was evolved as CO2-C. The amount of CO2 evolved from the forest floor of the Control plot was more than twice the amounts from the Low P and High P plots. There was little change in net P mineralization in the Control and Low P treatments throughout the incubation, but it increased slightly for the High P samples, suggesting a critical forest floor C:P ratio of 550 for net P mineralization. Changes in the 32P-specific activities of the Pi and microbial P pools during incubation, and concurrent changes in microbial-32P and 32Pi, indicated internal P cycling between these pools. The rate of internal P cycling varied with forest floor quality, and was highest in the High P forest floor. The High P samples had microbial C:P ratios of 22 : 1 which remained constant during the incubation, suggesting the microorganisms had adequate P levels.

Journal ArticleDOI
TL;DR: In this article, the authors found that the number and development of fir regeneration were influenced by species composition of a stand; fir regenerated not only in pure fir stands but also in mixed forests.

Journal ArticleDOI
TL;DR: In this article, NH4NO3 was added to a 0.52 ha forested headwater catchment in weekly portions by means of sprinklers below the canopy to study an ecosystem response to elevated nitrogen deposition.

Journal ArticleDOI
TL;DR: Trees with and without U. longissima showed a different pattern in their mineral composition, suggesting that a tree-specific difference in nutritional status might contribute to explain the patchy distribution of this lichen within seem- ingly homogeneous stands.
Abstract: Two neighbouring even-aged 130-yr old Picea abies trees in a homogeneous stand can differ substantially with respect to their epiphytic vegetation. Sampled branches from the canopy of one tree harboured 781 specimens of the old forest lichen Usnea longissima of which only 50 could be seen from the ground, whereas no U. longissima were found on its nearest neighbour. Usnea longissima was most abun- dant on branch tips in lower parts of the canopy on branch segments having the highest biomass of other alectorioid species. Trees with and without U. longissima showed a different pattern in their mineral composition, suggesting that a tree-specific difference in nutritional status might contribute to explain the patchy distribution of this lichen within seem- ingly homogeneous stands.

Journal ArticleDOI
TL;DR: To attain an optimum combination of quantity and quality of biomass in deciduous fodder tree and shrub plantations cutting or grazing should not start earlier than the third year since establishment.

Journal ArticleDOI
TL;DR: In this paper, Nitrate in soil solution generally constitutes less than 10% of the inorganic mobile anions and thereby contributes much less to the leaching of H +, Al, and base cations than CI and SO 4, the dominant mobile anion.

Journal ArticleDOI
TL;DR: The greenhouse transplanting experiment showed that higher temperatures shorten the life span of flowers and the role of plasticity in flower longevity for C. ambigua in relation to pollination success and reduction in the maintenance cost of the flowers.
Abstract: We investigated the longevity of individual flowers of Corydalis ambigua Cham. et Schlecht. during different periods of pollinator activity and at different temperatures. To measure potential (unpollinated) flower longevity of C. ambigua, this study was conducted at forest islands where pollinator visits were scarce. The longevity of individual flowers of C. ambigua indicated high plasticity. The longevity of unpollinated flowers in natural pollination ranged from 2 to 25 days and continuously decreased with the date of flower opening. The temperature increased as the flowering season progressed. Furthermore, the greenhouse transplanting experiment showed that higher temperatures shorten the life span of flowers. The longevity of pollinated flowers subjected to hand pollination of newly opened flowers was shorter than that of unpollinated flowers in natural pollination regardless of the date of flower opening. These results showed that not only high temperature but also pollination shortens flower longevity. We discuss the role of plasticity in flower longevity for C. ambigua in relation to pollination success and reduction in the maintenance cost of the flowers.

Journal ArticleDOI
TL;DR: It is concluded that skin mast cells can regulate primary hemostasis by prolonging bleeding time and by inhibiting thrombin generation.
Abstract: We studied the effects of stimulated skin mast cells on bleeding time and thrombin generation which was measured using prothrombin fragment F 1+2 (F 1+2) and thrombin-antithrombin-III-complex (TAT). In 10 patients with urticaria pigmentosa (chronic cutaneous mast cell accumulation) the mean bleeding time was significantly prolonged in wounds made on urticaria pigmentosa lesions vs. normal skin (460 ± 34 vs. 342 ± 27 s, p = 0.005). In 10 atopic subjects skin incisions were made on prick-tested sites 30, 60, 120 and 240 min after administration of an allergen (acute mast cell stimulation), histamine or vehicle. The mean bleeding time was significantly prolonged at all time points, being maximal at 120 min (60% prolonged) in wounds made on allergen-stimulated skin areas (p ,0.01) compared with histamine or vehicle sites. Administration of allergen or histamine lowered the TAT concentration in the bleeding-time blood. Furthermore, TAT and F 1+2 levels in the bleeding-time blood were lower at 60, 120 and 240 min after allergen or histamine application in comparison with samples collected at 30 min. We conclude that skin mast cells can regulate primary hemostasis by prolonging bleeding time and by inhibiting thrombin generation.

Journal ArticleDOI
TL;DR: In this paper, a new theory is presented on the cause of the prevalent directions of the spiral grain patterns found in conifers, based upon the assumption that spiral grain has a function, i.e. that it represents a growth strategy to ensure survival of the trees.
Abstract: A new theory is presented on the cause of the prevalent directions of the spiral grain patterns found in conifers. The hypothesis is based upon the assumption that spiral grain has a function, i.e. that it represents a growth strategy to ensure survival of the trees. The mechanical function of the tree trunk is placed in focus, that is the ability of the trees to withstand external mechanical loads, mainly from wind. Spiral grain is an optimized growth feature when the trees are exposed to combined bending and torsion. Torsion occurs when the crown is asymmetric in the plane perpendicular to the wind direction. Systematic crown asymmetry, with heavier crowns on the south side, was confirmed by measuring the crown projections on 253 sparsely grown pines; 76.7% of the trees had longer branches on the south than on the north side, and the average length difference was 40.8 cm. By studying wind maps it was seen that most of the coniferous forests have prevailing westerly winds, which, when combined with the crown asymmetry, leads to a prevailing torque. Right-handed spiral grain in the outermost layers of mature trees is proposed to be a strategy to withstand this torque, i.e. to avoid stem breakage.