scispace - formally typeset
Search or ask a question
Institution

Forest Research Institute

FacilityDehra Dūn, India
About: Forest Research Institute is a facility organization based out in Dehra Dūn, India. It is known for research contribution in the topics: Population & Forest management. The organization has 5320 authors who have published 7625 publications receiving 185876 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that enhanced AtNDPK2 expression affects oxidative stress tolerance leading to improved plant growth in transgenic poplar, and higher transcript levels of the auxin-response genes IAA2 and IAA5 are exhibited.
Abstract: Nucleoside diphosphate kinase 2 (NDPK2) is known to regulate the expression of antioxidant genes in plants. Previously, we reported that overexpression of Arabidopsis NDPK2 (AtNDPK2) under the control of an oxidative stress-inducible SWPA2 promoter in transgenic potato and sweetpotato plants enhanced tolerance to various abiotic stresses. In this study, transgenic poplar (Populus alba × Poplus glandulosa) expressing the AtNDPK2 gene under the control of a SWPA2 promoter (referred to as SN) was generated to develop plants with enhanced tolerance to oxidative stress. The level of AtNDPK2 expression and NDPK activity in SN plants following methyl viologen (MV) treatment was positively correlated with the plant's tolerance to MV-mediated oxidative stress. We also observed that antioxidant enzyme activities such as ascorbate peroxidase, catalase and peroxidase were increased in MV-treated leaf discs of SN plants. The growth of SN plants was substantially increased under field conditions including increased branch number and stem diameter. SN plants exhibited higher transcript levels of the auxin-response genes IAA2 and IAA5. These results suggest that enhanced AtNDPK2 expression affects oxidative stress tolerance leading to improved plant growth in transgenic poplar.

67 citations

Journal ArticleDOI
TL;DR: This paper presents clinical approaches to stabilize mast cells in the atherosclerotic plaque using animal models of plaque erosion and rupture and the origin of mast cells.
Abstract: The aim of the present review is to discuss the participation of mast cells in the pathogenesis of erosion and rupture of atherosclerotic plaques, the major causes behind acute coronary syndromes and myocardial infarction. We present ex vivo observations describing mast cells and their activation in human atherosclerotic plaques and discuss in vitro and in vivo data showing that mast cells are potential regulators of inflammation, immunity and adverse remodeling, including matrix remodeling and cell death. Furthermore, we focus on studies that have been performed with human tissues and human mast cells, but when appropriate, we also discuss observations made in animal models. Finally, we present potential pharmacological means to modulate mast cell responses in the arterial vessel walls.

67 citations

Journal ArticleDOI
TL;DR: In this paper, the authors characterized a plant-caterpillar food web from secondary vegetation in a New Guinean rain forest that included 63 plant species (87.5% of the total basal area), 546 Lepidoptera species and 1679 trophic links between them.
Abstract: We characterized a plant–caterpillar food web from secondary vegetation in a New Guinean rain forest that included 63 plant species (87.5% of the total basal area), 546 Lepidoptera species and 1679 trophic links between them. The strongest 14 associations involved 50% of all individual caterpillars while some links were extremely rare. A caterpillar randomly picked from the vegetation will, with ‡ 50% probability, (1) feed on one to three host plants (of the 63 studied), (2) feed on < 20% of local plant biomass and (3) have ‡ 90% of population concentrated on a single host plant species. Generalist species were quantitatively unimportant. Caterpillar assemblages on locally monotypic plant genera were distinct, while sympatric congeneric hosts shared many caterpillar species. The partitioning of the plant–caterpillar food web thus depends on the composition of the vegetation. In secondary forest the predominant plant genera were locally monotypic and supported locally isolated caterpillar assemblages.

67 citations

Journal ArticleDOI
TL;DR: The role of the tap root in tree anchorage has not yet been determined and in particular, the optimal root system architecture for increased tree anchorage is still not yet determined as mentioned in this paper.
Abstract: The optimal root system architecture for increased tree anchorage has not yet been determined and in particular, the role of the tap root remains elusive. In Maritime pine (Pinus pinaster Ait.), tap roots may play an important role in anchoring young trees, but in adult trees, their growth is often impeded by the presence of a hard pan layer in the soil and the tap root becomes a minor component of tree anchorage. To understand better the role of the tap root in young trees, we grew cuttings (no tap root present) and seedlings where the tap root had (−) or had not (+) been pruned, in the field for 7 years. The force (F) necessary to deflect the stem sideways was then measured and divided by stem cross-sectional area (CSA), giving a parameter analogous to stress during bending. Root systems were extracted and root architecture and wood mechanical properties (density and longitudinal modulus of elasticity, EL) determined. In seedlings (−) tap roots, new roots had regenerated where the tap root had been pruned, whereas in cuttings, one or two lateral roots had grown downwards and acted as tap roots. Cuttings had significantly less lateral roots than the other treatments, but those near the soil surface were 14% and 23% thicker than plants (+) and (−) tap roots, respectively. Cuttings were smaller than seedlings, but were not relatively less resistant to stem deflection, probably because the thicker lateral roots compensated for their lower number. Apart from stem volume which was greater in trees (+) tap roots, no significant differences with regard to size or any root system variable were found in plants (−) or (+) tap roots. In all treatments, lateral roots were structurally reinforced through extra growth along the direction of the prevailing wind, which also improved tap root anchorage. Predictors of log F/CSA differed depending on treatment: in trees (−) tap roots, a combination of the predictors stem taper and %volume allocated to deep roots was highly regressed with log F/CSA (R2 = 0.83), unlike plants (+) tap roots where the combined predictors of lateral root number and root depth were best regressed with log F/CSA (R2 = 0.80). In cuttings, no clear relationships between log F/CSA and any parameter could be found. Wood density and EL did not differ between roots, but did diminish with increasing distance from the stem in lateral roots. EL was significantly lower in lateral roots from cuttings. Results showed that nursery techniques influence plant development but that the architectural pattern of Maritime pine root systems is stable, developing a sinker root system even when grown from cuttings. Anchorage is affected but the consequences for the long-term are still not known. Numerical modelling may be the only viable method to investigate the function that each root plays in adult tree anchorage.

67 citations

Journal ArticleDOI
TL;DR: Suillus lakei appears to be a common mycorrhizal fungus of Douglas fir in the South Island of New Zealand, whereas this association is rare in the North Island.
Abstract: Attempts were made to isolate mycorrhizal fungi of a timber species, Pseudotsuga menziesii (Mirb.) Franco which is exotic to New ZeaLond. Over 2000 pieces of mycorrhizal roots were plated out on Hagem medium and modified Melin-Norkrans medium; 14% of these yielded Rhizopogon vinicolor A. H. Smith, 6% gave rise to Amanita muscaria (L. ex Fr.) S.F. Gray, and 7% to unidentified basidiomycetes, 21% yielded dark sterile mycelia, 13% were sporing Fungi Imperfecti presumed to be contaminants, and 39% remained free of fungal growth. Eleven basidomycetous fungi were tested for their mycorrhiza-forming ability on P. menziesii seedlings. Under the test conditions R. vinicolor, Hebeloma crustuliniforme (Bull, ex St. Am) Quel., A. muscaria, Scleroderma bovista Fr., Laccaria laccata (Scop, ex Fr.) Berk. & Br., Inocybe corydalina (?), I. jurana (?), and I. maculata (?) formed mycorrhizas.

67 citations


Authors

Showing all 5332 results

NameH-indexPapersCitations
Kari Alitalo174817114231
Jaakko Kaprio1631532126320
Glenn D. Prestwich8869042758
John K. Volkman7821221931
Petri T. Kovanen7743227171
Hailong Wang6964719652
Mika Ala-Korpela6531918048
Heikki Henttonen6427114536
Zhihong Xu5743811832
Kari Pulkki5421511166
Louis A. Schipper531929224
Sang Young Lee532719917
Young-Joon Ahn522889121
Venkatesh Narayanamurti492589399
Francis M. Kelliher491248599
Network Information
Related Institutions (5)
Swedish University of Agricultural Sciences
35.2K papers, 1.4M citations

87% related

United States Forest Service
21.8K papers, 959.1K citations

86% related

Institut national de la recherche agronomique
68.3K papers, 3.2M citations

83% related

Wageningen University and Research Centre
54.8K papers, 2.6M citations

82% related

Norwegian University of Life Sciences
13.5K papers, 442.2K citations

82% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20236
202226
2021504
2020503
2019440
2018381