scispace - formally typeset
Search or ask a question
Institution

Forest Research Institute

FacilityDehra Dūn, India
About: Forest Research Institute is a facility organization based out in Dehra Dūn, India. It is known for research contribution in the topics: Population & Forest management. The organization has 5320 authors who have published 7625 publications receiving 185876 citations.


Papers
More filters
Journal ArticleDOI
01 Jul 2008-Oryx
TL;DR: The work by K. Pfliegner around Uluguru was supported by a research grant from the Critical Ecosystem Partnership Fund (CEPF) and undertaken in cooperation with the Wildlife Conservation Society of Tanzania.
Abstract: We thank the staff of the Forestry and Beekeeping Division for sharing data obtained through the national assessment of PFM in Tanzania, and their agreement to use these data. The national PFM assessment, as well as the forest assessment work undertaken by J. Isango, was made possible by a grant to the government of Tanzania from the Danish government under a wider grant in support of PFM. The work by K. Pfliegner around Uluguru was supported by a research grant from the Critical Ecosystem Partnership Fund (CEPF) and undertaken in cooperation with the Wildlife Conservation Society of Tanzania. Much of the work undertaken by E. Zahabu was supported by the Netherlands Directorate for Development Cooperation through the University of Twente, Netherlands. Disturbance transect data from the Eastern Arc Mountains analysed by A. Ahrends come from reports produced mainly by Frontier-Tanzania (a collaboration of the Society for Environmental Exploration and the University of Dar es Salaam). We gratefully acknowledge the efforts of the Society for Environmental Exploration staff in London (especially E. Fanning) and the many Frontier-Tanzania staff and volunteers who collected data, especially N. Doggart, K. Doody, C. Bracebridge, V. Williams and N. Owens. Data for the coastal forests were primarily collected by A. Ahrends and B. Mhoro using funding from CEPF, WWF-Tanzania and the University of Greifswald, Germany. We also thank WWF-US and University of Cambridge, UK (Valuing the Arc) for covering the time of N. Burgess during the preparation of this paper. A. Ahrends was funded by the Marie-Curie Excellence programme of the European 6th Framework under contract MEXTCT- 2004-517098 to Dr. Rob Marchant, who we also thank for useful comments on an earlier draft. Two anonymous referees also provided valuable suggestions. Fig. 1 was prepared by J. Green, supported by WWF-US.

207 citations

Journal ArticleDOI
20 Feb 2013-PLOS ONE
TL;DR: The analysis is the first to find a local scale positive relationship between tree species richness and tree wood production occurring across a continent, and the results strongly support incorporating the role of biodiversity in management and policy plans for forest carbon sequestration.
Abstract: Background - Despite empirical support for an increase in ecosystem productivity with species diversity in synthetic systems, there is ample evidence that this relationship is dependent on environmental characteristics, especially in structurally more complex natural systems. Empirical support for this relationship in forests is urgently needed, as these ecosystems play an important role in carbon sequestration. Methodology/Principal Findings - We tested whether tree wood production is positively related to tree species richness while controlling for climatic factors, by analyzing 55265 forest inventory plots in 11 forest types across five European countries. On average, wood production was 24% higher in mixed than in monospecific forests. Taken alone, wood production was enhanced with increasing tree species richness in almost all forest types. In some forests, wood production was also greater with increasing numbers of tree types. Structural Equation Modeling indicated that the increase in wood production with tree species richness was largely mediated by a positive association between stand basal area and tree species richness. Mean annual temperature and mean annual precipitation affected wood production and species richness directly. However, the direction and magnitude of the influence of climatic variables on wood production and species richness was not consistent, and vary dependent on forest type. Conclusions - Our analysis is the first to find a local scale positive relationship between tree species richness and tree wood production occurring across a continent. Our results strongly support incorporating the role of biodiversity in management and policy plans for forest carbon sequestration.

207 citations

Journal ArticleDOI
TL;DR: This paper analyzed 17 time-series of the amount of wood damaged by Ips typographus, the most destructive pest of Norway spruce forests, collected across 8 European countries in the last three decades.
Abstract: Bark beetles are among the most devastating biotic agents affecting forests globally and several species are expected to be favored by climate change. Given the potential interactions of insect outbreaks with other biotic and abiotic disturbances, and the potentially strong impact of changing disturbance regimes on forest resources, investigating climatic drivers of destructive bark beetle outbreaks is of paramount importance. We analyzed 17 time-series of the amount of wood damaged by Ips typographus, the most destructive pest of Norway spruce forests, collected across 8 European countries in the last three decades. We aimed to quantify the relative importance of key climate drivers in explaining timber loss dynamics, also testing for possible synergistic effects. Local outbreaks shared the same drivers, including increasing summer rainfall deficit and warm temperatures. Large availability of storm-felled trees in the previous year was also strongly related to an increase in timber loss, likely by providing an alternative source of breeding material. We did not find any positive synergy among outbreak drivers. On the contrary, the occurrence of large storms reduced the positive effect of warming temperatures and rainfall deficit. The large surplus of breeding material likely boosted I. typographus population size above the density threshold required to colonize and kill healthy trees irrespective of other climate triggers. Importantly, we found strong negative density dependence in I. typographus that may provide a mechanism for population decline after population eruptions. Generality in the effects of complex climatic events across different geographical areas suggests that the large-scale drivers can be used as early warning indicators of increasing local outbreak probability. Ecography (Less)

206 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed examination of these compounds indicated that a range of low molecular weight phenolics, related in structure to "Hibberts ketones", may be identified as the most inhibitory materials.
Abstract: Sugar solutions obtained by dilute acid hydrolysis of the softwood Pinus radiata contain various wood-derived components which are inhibitory to the ethanolic fermentation by the yeast Saccharomyces cerevisiae. A detailed examination of these compounds indicated that a range of low molecular weight phenolics, related in structure to ‘Hibberts ketones’, may be identified as the most inhibitory materials. These lignin-based compounds, although present at low levels compared with the carbohydrate-degradation compounds, are approximately 10 times more inhibitory.

205 citations

Journal ArticleDOI
01 Mar 1999-Ecology
TL;DR: These studies suggest that genetic-based plant traits affect the distribution of many species and that the variation in hybrids can be used as tools to examine the genetic components of community structure and biodiversity.
Abstract: Plant hybrid zones are dynamic centers of ecological and evolutionary processes for plants and their associated communities. Studies in the wild and in gardens with synthetic crosses showed that hybrid eucalypts supported the greatest species richness and abundances of insect and fungal taxa. In an updated review of 152 case studies of taxa associated with diverse hybridizing systems, there were 43 (28%) cases of hybrids being more susceptible than their parent species, 7 (5%) resistant, 35 (23%) additive, 35 (23%) dominant, and 32 (21%) showed no response to hybridization. Thus, most taxa respond to hybrids in ways that result in equal or greater abundance, and hybrids tend to accumulate the taxa of their parent species. These studies suggest that genetic-based plant traits affect the distribution of many species and that the variation in hybrids can be used as tools to examine the genetic components of community structure and biodiversity. Several patterns have emerged thus far. (1) Genetic variation between classes of hybrids (e.g., F1’s vs. backcrosses) may equal or even exceed that found between species. (2) As a reflection of this genetic variation, herbivores are more likely to differentiate between hybrid classes than they are to differentiate between pure plant species. (3) The communities associated with different hybrid classes can differ from one another as well as from their parental species. (4) Generalist and specialist herbivores predictably vary in their responses to hybrids. (5) Plant hybrid zones may represent essential habitat for some arthropod species. (6) Even nesting birds respond to hybridizing plants. (7) Including multiple trophic levels and taxa from microbes to vertebrates, susceptible hybrid genotypes support greater biodiversity than resistant genotypes. (8) The effects of hybridization on common or keystone species can either positively or negatively affect biodiversity. The indirect impacts of hybridization on biodiversity may exceed the direct impacts and may result in “apparent” herbivore resistance or susceptibility at the community level. (9) Although hybrids are often maligned, exotic or problem hybrids generally result from human disturbances, whereas native hybrids are part of natural ecosystems and should be conserved. Three predictions are made: (1) Intermediate genetic differences between the parental species will result in the greatest genetic variation in the hybrid zone, which in turn will have a positive effect on biodiversity. (2) Bidirectional introgression enhances species richness on hybrids, whereas F1 sterility and unidirectional introgression limit the accumulation of species on hybrids. (3) Although susceptible hybrids are likely to support the greatest biodiversity, the impacts of hybridization on keystone species will be crucial in determining the overall effect.

202 citations


Authors

Showing all 5332 results

NameH-indexPapersCitations
Kari Alitalo174817114231
Jaakko Kaprio1631532126320
Glenn D. Prestwich8869042758
John K. Volkman7821221931
Petri T. Kovanen7743227171
Hailong Wang6964719652
Mika Ala-Korpela6531918048
Heikki Henttonen6427114536
Zhihong Xu5743811832
Kari Pulkki5421511166
Louis A. Schipper531929224
Sang Young Lee532719917
Young-Joon Ahn522889121
Venkatesh Narayanamurti492589399
Francis M. Kelliher491248599
Network Information
Related Institutions (5)
Swedish University of Agricultural Sciences
35.2K papers, 1.4M citations

87% related

United States Forest Service
21.8K papers, 959.1K citations

86% related

Institut national de la recherche agronomique
68.3K papers, 3.2M citations

83% related

Wageningen University and Research Centre
54.8K papers, 2.6M citations

82% related

Norwegian University of Life Sciences
13.5K papers, 442.2K citations

82% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20236
202226
2021504
2020503
2019440
2018381