scispace - formally typeset
Search or ask a question
Institution

Forest Research Institute

FacilityDehra Dūn, India
About: Forest Research Institute is a facility organization based out in Dehra Dūn, India. It is known for research contribution in the topics: Population & Forest management. The organization has 5320 authors who have published 7625 publications receiving 185876 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical countries, and used this database to determine if H:D relationships differ by geographic region and forest type (wet to dry forests, including zones of tension where forest and savanna overlap).
Abstract: . Tropical tree height-diameter (H:D) relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical countries. Utilising this database, our objectives were: 1. to determine if H:D relationships differ by geographic region and forest type (wet to dry forests, including zones of tension where forest and savanna overlap). 2. to ascertain if the H:D relationship is modulated by climate and/or forest structural characteristics (e.g. stand-level basal area, A). 3. to develop H:D allometric equations and evaluate biases to reduce error in future local-to-global estimates of tropical forest biomass. Annual precipitation coefficient of variation (PV), dry season length (SD), and mean annual air temperature (TA) emerged as key drivers of variation in H:D relationships at the pantropical and region scales. Vegetation structure also played a role with trees in forests of a high A being, on average, taller at any given D. After the effects of environment and forest structure are taken into account, two main regional groups can be identified. Forests in Asia, Africa and the Guyana Shield all have, on average, similar H:D relationships, but with trees in the forests of much of the Amazon Basin and tropical Australia typically being shorter at any given D than their counterparts elsewhere. The region-environment-structure model with the lowest Akaike's information criterion and lowest deviation estimated stand-level H across all plots to within amedian −2.7 to 0.9% of the true value. Some of the plot-to-plot variability in H:D relationships not accounted for by this model could be attributed to variations in soil physical conditions. Other things being equal, trees tend to be more slender in the absence of soil physical constraints, especially at smaller D. Pantropical and continental-level models provided less robust estimates of H, especially when the roles of climate and stand structure in modulating H:D allometry were not simultaneously taken into account.

462 citations

Journal ArticleDOI
TL;DR: The hypothesis that mast cells, a cell type capable of triggering matrix degradation, actively participate in the destabilization and ensuing rupture of coronary atheromas and thus may trigger an acute coronary event is supported.
Abstract: BACKGROUNDRupture in the shoulder region of a coronary atheroma is considered to be a sequel to local extracellular matrix degradation in this highly vulnerable site. Such degradation could be triggered by mast cells, which are filled with neutral proteases and are present in coronary atheromas. However, the distribution and phenotype of mast cells within coronary atheromas have not been studied.METHODS AND RESULTSSpecimens of normal and atherosclerotic human coronary intima from 32 autopsy cases with ages ranging from 13 to 67 years were stained with monoclonal antibodies against the two major proteases of mast cells, tryptase and chymase. Of the tryptase-containing mast cells, a variable proportion (average, 40%; range, 0% to 100%) also contained chymase. In the normal coronary intimas, mast cells amounted to 0.1% of all nucleated cells. In the fatty streaks, this proportion was higher by 9-fold, and in the cap, core, and shoulder regions of atheromas by 5-, 5-, and 10-fold, respectively. Electron and l...

457 citations

Journal ArticleDOI
TL;DR: It is shown that there was a gross loss of tropical forests in the 1990s and 2000s and that carbon loss rates did not change between the two last decades, reconciling recent low estimates of carbon emissions from tropical deforestation.
Abstract: We estimate changes in forest cover (deforestation and forest regrowth) in the tropics for the two last decades (1990–2000 and 2000–2010) based on a sample of 4000 units of 10 ×10 km size. Forest cover is interpreted from satellite imagery at 30 × 30 m resolution. Forest cover changes are then combined with pan-tropical biomass maps to estimate carbon losses. We show that there was a gross loss of tropical forests of 8.0 million ha yr−1 in the 1990s and 7.6 million ha yr−1 in the 2000s (0.49% annual rate), with no statistically significant difference. Humid forests account for 64% of the total forest cover in 2010 and 54% of the net forest loss during second study decade. Losses of forest cover and Other Wooded Land (OWL) cover result in estimates of carbon losses which are similar for 1990s and 2000s at 887 MtC yr−1 (range: 646–1238) and 880 MtC yr−1 (range: 602–1237) respectively, with humid regions contributing two-thirds. The estimates of forest area changes have small statistical standard errors due to large sample size. We also reduce uncertainties of previous estimates of carbon losses and removals. Our estimates of forest area change are significantly lower as compared to national survey data. We reconcile recent low estimates of carbon emissions from tropical deforestation for early 2000s and show that carbon loss rates did not change between the two last decades. Carbon losses from deforestation represent circa 10% of Carbon emissions from fossil fuel combustion and cement production during the last decade (2000–2010). Our estimates of annual removals of carbon from forest regrowth at 115 MtC yr−1 (range: 61–168) and 97 MtC yr−1 (53–141) for the 1990s and 2000s respectively are five to fifteen times lower than earlier published estimates.

453 citations


Authors

Showing all 5332 results

NameH-indexPapersCitations
Kari Alitalo174817114231
Jaakko Kaprio1631532126320
Glenn D. Prestwich8869042758
John K. Volkman7821221931
Petri T. Kovanen7743227171
Hailong Wang6964719652
Mika Ala-Korpela6531918048
Heikki Henttonen6427114536
Zhihong Xu5743811832
Kari Pulkki5421511166
Louis A. Schipper531929224
Sang Young Lee532719917
Young-Joon Ahn522889121
Venkatesh Narayanamurti492589399
Francis M. Kelliher491248599
Network Information
Related Institutions (5)
Swedish University of Agricultural Sciences
35.2K papers, 1.4M citations

87% related

United States Forest Service
21.8K papers, 959.1K citations

86% related

Institut national de la recherche agronomique
68.3K papers, 3.2M citations

83% related

Wageningen University and Research Centre
54.8K papers, 2.6M citations

82% related

Norwegian University of Life Sciences
13.5K papers, 442.2K citations

82% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20236
202226
2021504
2020503
2019440
2018381