scispace - formally typeset
Search or ask a question
Institution

Fred Hutchinson Cancer Research Center

NonprofitCape Town, South Africa
About: Fred Hutchinson Cancer Research Center is a nonprofit organization based out in Cape Town, South Africa. It is known for research contribution in the topics: Population & Transplantation. The organization has 12322 authors who have published 30954 publications receiving 2288772 citations. The organization is also known as: Fred Hutch & The Hutch.


Papers
More filters
Journal ArticleDOI
TL;DR: In the context of competing risks the Kaplan-Meier estimator is often unsuitable for summarizing failure time data, so alternatives including marginal probability and conditional probability estimators are discussed.
Abstract: In the context of competing risks the Kaplan-Meier estimator is often unsuitable for summarizing failure time data. We discuss some alternative descriptive methods including marginal probability and conditional probability estimators. Two-sample test statistics are also presented.

591 citations

Journal ArticleDOI
TL;DR: Recent advances in understanding the interactions of the HIV-1 Nef, Vif, Vpu, and Vpr proteins with factors and pathways expressed in cells of the immune system are discussed.

591 citations

Journal ArticleDOI
TL;DR: In 2010, approximately 222,520 new cases of lung or bronchial cancer will be diagnosed in the USA, and 157,300 patients are expected to die of this disease as discussed by the authors.
Abstract: In 2010, approximately 222,520 new cases of lung or bronchial cancer will be diagnosed in the USA, and 157,300 patients are expected to die of this disease [1]. Lung cancer is the leading cause of cancer-related death in both men and women, and non-small cell lung cancer (NSCLC) accounts for about 80 % of these cases. Lung cancer is most often asymptomatic in its early stages; consequently, the disease is usually diagnosed at an advanced stage, when it is much more difficult to treat. One or more genes are believed to be responsible for an inherited increase in risk of developing lung cancer in the general population. Smoking remains one of the main environmental factors associated with the development of lung cancer [2]. Although the development of lung cancer seems to be the result of several sequential molecular abnormalities in individuals at high risk of developing the disease, the genetic mechanisms by which an individual develops lung cancer remain largely unknown. These steps involve abnormalities in the expression of angiogenic factors (e.g., vascular endothelial growth factor, or VEGF and epithelial growth factor receptors, or EGFRs) [3]. The heterogeneity of lung cancer and the diversity of its morphologic appearance and molecular properties make the application of molecular targeted therapies used in other cancers more complex, but such therapies are certainly a goal for the future.

591 citations

Journal ArticleDOI
03 Dec 1993-Cell
TL;DR: Four distinct mutations in the APC gene have now been identified in seven AAPC families, and they differ in that the four mutated sites are located very close to one another and nearer the 5' end of theAPC gene than any base substitutions or small deletions yet discovered in patients with classical APC.

591 citations

Journal ArticleDOI
Genevieve L. Wojcik1, Mariaelisa Graff2, Katherine K. Nishimura3, Ran Tao4, Jeffrey Haessler3, Christopher R. Gignoux1, Christopher R. Gignoux5, Heather M. Highland2, Yesha Patel6, Elena P. Sorokin1, Christy L. Avery2, Gillian M. Belbin7, Stephanie A. Bien3, Iona Cheng8, Sinead Cullina7, Chani J. Hodonsky2, Yao Hu3, Laura M. Huckins7, Janina M. Jeff7, Anne E. Justice2, Jonathan M. Kocarnik3, Unhee Lim9, Bridget M Lin2, Yingchang Lu7, Sarah C. Nelson10, Sungshim L. Park6, Hannah Poisner7, Michael Preuss7, Melissa A. Richard11, Claudia Schurmann12, Claudia Schurmann7, Veronica Wendy Setiawan6, Alexandra Sockell1, Karan Vahi6, Marie Verbanck7, Abhishek Vishnu7, Ryan W. Walker7, Kristin L. Young2, Niha Zubair3, Victor Acuña-Alonso, José Luis Ambite6, Kathleen C. Barnes5, Eric Boerwinkle11, Erwin P. Bottinger7, Erwin P. Bottinger12, Carlos Bustamante1, Christian Caberto9, Samuel Canizales-Quinteros, Matthew P. Conomos10, Ewa Deelman6, Ron Do7, Kimberly F. Doheny13, Lindsay Fernández-Rhodes14, Lindsay Fernández-Rhodes2, Myriam Fornage11, Benyam Hailu15, Gerardo Heiss2, Brenna M. Henn16, Lucia A. Hindorff15, Rebecca D. Jackson17, Cecelia A. Laurie10, Cathy C. Laurie10, Yuqing Li8, Yuqing Li18, Danyu Lin2, Andrés Moreno-Estrada, Girish N. Nadkarni7, Paul Norman5, Loreall Pooler6, Alexander P. Reiner10, Jane Romm13, Chiara Sabatti1, Karla Sandoval, Xin Sheng6, Eli A. Stahl7, Daniel O. Stram6, Timothy A. Thornton10, Christina L. Wassel19, Lynne R. Wilkens9, Cheryl A. Winkler, Sachi Yoneyama2, Steven Buyske20, Christopher A. Haiman6, Charles Kooperberg3, Loic Le Marchand9, Ruth J. F. Loos7, Tara C. Matise20, Kari E. North2, Ulrike Peters3, Eimear E. Kenny7, Christopher S. Carlson3 
27 Jun 2019-Nature
TL;DR: The value of diverse, multi-ethnic participants in large-scale genomic studies is demonstrated and evidence of effect-size heterogeneity across ancestries for published GWAS associations, substantial benefits for fine-mapping using diverse cohorts and insights into clinical implications are shown.
Abstract: Genome-wide association studies (GWAS) have laid the foundation for investigations into the biology of complex traits, drug development and clinical guidelines. However, the majority of discovery efforts are based on data from populations of European ancestry1-3. In light of the differential genetic architecture that is known to exist between populations, bias in representation can exacerbate existing disease and healthcare disparities. Critical variants may be missed if they have a low frequency or are completely absent in European populations, especially as the field shifts its attention towards rare variants, which are more likely to be population-specific4-10. Additionally, effect sizes and their derived risk prediction scores derived in one population may not accurately extrapolate to other populations11,12. Here we demonstrate the value of diverse, multi-ethnic participants in large-scale genomic studies. The Population Architecture using Genomics and Epidemiology (PAGE) study conducted a GWAS of 26 clinical and behavioural phenotypes in 49,839 non-European individuals. Using strategies tailored for analysis of multi-ethnic and admixed populations, we describe a framework for analysing diverse populations, identify 27 novel loci and 38 secondary signals at known loci, as well as replicate 1,444 GWAS catalogue associations across these traits. Our data show evidence of effect-size heterogeneity across ancestries for published GWAS associations, substantial benefits for fine-mapping using diverse cohorts and insights into clinical implications. In the United States-where minority populations have a disproportionately higher burden of chronic conditions13-the lack of representation of diverse populations in genetic research will result in inequitable access to precision medicine for those with the highest burden of disease. We strongly advocate for continued, large genome-wide efforts in diverse populations to maximize genetic discovery and reduce health disparities.

591 citations


Authors

Showing all 12368 results

NameH-indexPapersCitations
Walter C. Willett3342399413322
Robert Langer2812324326306
Meir J. Stampfer2771414283776
JoAnn E. Manson2701819258509
David J. Hunter2131836207050
Peer Bork206697245427
Eric Boerwinkle1831321170971
Ruedi Aebersold182879141881
Bruce M. Psaty1811205138244
Aaron R. Folsom1811118134044
David Baker1731226109377
Frederick W. Alt17157795573
Lily Yeh Jan16246773655
Yuh Nung Jan16246074818
Charles N. Serhan15872884810
Network Information
Related Institutions (5)
Memorial Sloan Kettering Cancer Center
65.3K papers, 4.4M citations

96% related

National Institutes of Health
297.8K papers, 21.3M citations

95% related

University of Texas MD Anderson Cancer Center
92.5K papers, 4.7M citations

95% related

Johns Hopkins University School of Medicine
79.2K papers, 4.7M citations

94% related

Baylor College of Medicine
94.8K papers, 5M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20237
202275
20211,981
20201,995
20191,685
20181,571