scispace - formally typeset
Search or ask a question
Institution

Fred Hutchinson Cancer Research Center

NonprofitCape Town, South Africa
About: Fred Hutchinson Cancer Research Center is a nonprofit organization based out in Cape Town, South Africa. It is known for research contribution in the topics: Population & Transplantation. The organization has 12322 authors who have published 30954 publications receiving 2288772 citations. The organization is also known as: Fred Hutch & The Hutch.


Papers
More filters
Journal ArticleDOI
TL;DR: The concept that aging-related changes in the prostate microenvironment may contribute to the progression of prostate neoplasia is supported.
Abstract: The greatest risk factor for developing carcinoma of the prostate is advanced age Potential molecular and physiologic contributors to the frequency of cancer occurrence in older individuals include the accumulation of somatic mutations through defects in genome maintenance, epigenetic gene silencing, oxidative stress, loss of immune surveillance, telomere dysfunction, chronic inflammation, and alterations in tissue microenvironment In this context, the process of prostate carcinogenesis can be influenced through interactions between intrinsic cellular alterations and the extrinsic microenvironment and macroenvironment, both of which change substantially as a consequence of aging In this study, we sought to characterize the molecular alterations that occur during the process of prostate fibroblast senescence to identify factors in the aged tissue microenvironment capable of promoting the proliferation and potentially the neoplastic progression of prostate epithelium We evaluated three mechanisms leading to cell senescence: oxidative stress, DNA damage, and replicative exhaustion We identified a consistent program of gene expression that includes a subset of paracrine factors capable of influencing adjacent prostate epithelial growth Both direct coculture and conditioned medium from senescent prostate fibroblasts stimulated epithelial cell proliferation, 3-fold and 2-fold, respectively The paracrine-acting proteins fibroblast growth factor 7, hepatocyte growth factor, and amphiregulin (AREG) were elevated in the extracellular environment of senescent prostate fibroblasts Exogenous AREG alone stimulated prostate epithelial cell growth, and neutralizing antibodies and small interfering RNA targeting AREG attenuated, but did not completely abrogate the growth-promoting effects of senescent fibroblast conditioned medium These results support the concept that aging-related changes in the prostate microenvironment may contribute to the progression of prostate neoplasia

428 citations

Journal ArticleDOI
09 Nov 2000-Nature
TL;DR: The isolation of a reinitiation intermediate that includes transcription factors TFIID, TFIIA,TFIIH, TFIIE and Mediator is described, suggesting a new role for some activators and Mediation in promoting high levels of transcription.
Abstract: High levels of gene transcription by RNA polymerase II depend on high rates of transcription initiation and reinitiation. Initiation requires recruitment of the complete transcription machinery to a promoter, a process facilitated by activators and chromatin remodelling factors. Reinitiation probably occurs through a different pathway. After initiation, a subset of the transcription machinery remains at the promoter, forming a platform for assembly of a second transcription complex. Here we describe the isolation of a reinitiation intermediate that includes transcription factors TFIID, TFIIA, TFIIH, TFIIE and Mediator. This intermediate can act as a scaffold for formation of a functional reinitiation complex. Formation of this scaffold is dependent on ATP and TFIIH. The scaffold is stabilized in the presence of the activator Gal4-VP16, but not Gal4-AH, suggesting a new role for some activators and Mediator in promoting high levels of transcription.

428 citations

Journal ArticleDOI
19 Jun 1998-Science
TL;DR: Human immunodeficiency virus type-1 manipulates fundamental host cell processes in sophisticated ways to achieve optimum replicative efficiency and provides new insights into central questions of virology and host cell biology.
Abstract: Human immunodeficiency virus type-1 (HIV-1) manipulates fundamental host cell processes in sophisticated ways to achieve optimum replicative efficiency. Recent studies have provided new details on the molecular interactions of HIV-1 with its host cell. For example, HIV-1 encodes a protein that regulates transcriptional elongation by interacting with a cellular cyclin-dependent kinase, another that activates the specific nuclear export of viral RNA, and several others that affect the intracellular trafficking of viral and host cell proteins. Detailed analysis of the interplay between these viral proteins and normal cellular activities has provided new insights into central questions of virology and host cell biology.

427 citations

Journal ArticleDOI
Ryan M Barber1, Nancy Fullman1, Reed J D Sorensen1, Thomas J. Bollyky  +757 moreInstitutions (314)
TL;DR: In this paper, the authors use the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) to improve and expand the quantification of personal health-care access and quality for 195 countries and territories from 1990 to 2015.

427 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss methodological aspects of currently used quantitative assays for cytomegalovirus (CMV) (i.e., viral culture techniques, antigen detection, DNA detection assays including PCR, branched-DNA assay, and the DNA hybrid capture assay) and address the correlation of systemic and site-specific CMV load and CMV disease in different populations of immunosuppressed patients as well as the response to antiviral treatment.
Abstract: Cytomegalovirus (CMV) is an important pathogen in transplant recipients and human immunodeficiency virus (HIV)-infected individuals. Major progress has been made in developing quantitative detection methods for CMV in recent years. Due to their high sensitivity, these assays can detect CMV early, and quantitation may be useful in predicting the patient’s risk for disease and in monitoring the effect of antiviral therapy. This review discusses methodological aspects of currently used quantitative assays for CMV (i.e., viral culture techniques, antigen detection assays, DNA detection assays including PCR, branched-DNA assay, and the DNA hybrid capture assay) and addresses the correlation of systemic and site-specific CMV load and CMV disease in different populations of immunosuppressed patients as well as the response to antiviral treatment. To date, direct antigen detection and molecular techniques have largely replaced traditional culture-based techniques for CMV quantitation. In general, a high systemic CMV load is correlated with CMV disease. This correlation is strong in the HIV-infected population and in solid-organ transplant recipients but less clear in allogeneic marrow transplant recipients. Measuring the viral load at specific anatomic sites may be an alternative way to assess disease activity in situations where the systemic viral load correlates poorly with disease activity. A reduction of the systemic CMV load also correlates with a response to antiviral treatment, but more research is needed to evaluate the role of viral load as a surrogate marker for drug resistance. Due to the widespread use of quantitative CMV detection techniques to direct and monitor antiviral treatment, there is a great need for an assessment of the reproducibility of test results and better standardization of the assays.

425 citations


Authors

Showing all 12368 results

NameH-indexPapersCitations
Walter C. Willett3342399413322
Robert Langer2812324326306
Meir J. Stampfer2771414283776
JoAnn E. Manson2701819258509
David J. Hunter2131836207050
Peer Bork206697245427
Eric Boerwinkle1831321170971
Ruedi Aebersold182879141881
Bruce M. Psaty1811205138244
Aaron R. Folsom1811118134044
David Baker1731226109377
Frederick W. Alt17157795573
Lily Yeh Jan16246773655
Yuh Nung Jan16246074818
Charles N. Serhan15872884810
Network Information
Related Institutions (5)
Memorial Sloan Kettering Cancer Center
65.3K papers, 4.4M citations

96% related

National Institutes of Health
297.8K papers, 21.3M citations

95% related

University of Texas MD Anderson Cancer Center
92.5K papers, 4.7M citations

95% related

Johns Hopkins University School of Medicine
79.2K papers, 4.7M citations

94% related

Baylor College of Medicine
94.8K papers, 5M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20237
202275
20211,981
20201,995
20191,685
20181,571