scispace - formally typeset
Search or ask a question
Institution

Fred Hutchinson Cancer Research Center

NonprofitCape Town, South Africa
About: Fred Hutchinson Cancer Research Center is a nonprofit organization based out in Cape Town, South Africa. It is known for research contribution in the topics: Population & Transplantation. The organization has 12322 authors who have published 30954 publications receiving 2288772 citations. The organization is also known as: Fred Hutch & The Hutch.


Papers
More filters
Journal ArticleDOI
TL;DR: This review summarizes the factors that contribute to antifungal drug resistance on three levels: clinical factors that result in the inability to successfully treat refractory disease; cellular factors associated with a resistant fungal strain; and molecular factors that are ultimately responsible for the resistance phenotype in the cell.
Abstract: In the past decade, the frequency of diagnosed fungal infections has risen sharply due to several factors, including the increase in the number of immunosuppressed patients resulting from the AIDS epidemic and treatments during and after organ and bone marrow transplants. Linked with the increase in fungal infections is a recent increase in the frequency with which these infections are recalcitrant to standard antifungal therapy. This review summarizes the factors that contribute to antifungal drug resistance on three levels: (i) clinical factors that result in the inability to successfully treat refractory disease; (ii) cellular factors associated with a resistant fungal strain; and (iii) molecular factors that are ultimately responsible for the resistance phenotype in the cell. Many of the clinical factors that contribute to resistance are associated with the immune status of the patient, with the pharmacology of the drugs, or with the degree or type of fungal infection present. At a cellular level, antifungal drug resistance can be the result of replacement of a susceptible strain with a more resistant strain or species or the alteration of an endogenous strain (by mutation or gene expression) to a resistant phenotype. The molecular mechanisms of resistance that have been identified to date in Candida albicans include overexpression of two types of efflux pumps, overexpression or mutation of the target enzyme, and alteration of other enzymes in the same biosynthetic pathway as the target enzyme. Since the study of antifungal drug resistance is relatively new, other factors that may also contribute to resistance are discussed.

1,321 citations

Journal ArticleDOI
TL;DR: DNA methylation is mapped in the entire Arabidopsis thaliana genome at high resolution, indicating that genic transcription and DNA methylation are closely interwoven processes.
Abstract: Cytosine methylation, a common form of DNA modification that antagonizes transcription, is found at transposons and repeats in vertebrates, plants and fungi. Here we have mapped DNA methylation in the entire Arabidopsis thaliana genome at high resolution. DNA methylation covers transposons and is present within a large fraction of A. thaliana genes. Methylation within genes is conspicuously biased away from gene ends, suggesting a dependence on RNA polymerase transit. Genic methylation is strongly influenced by transcription: moderately transcribed genes are most likely to be methylated, whereas genes at either extreme are least likely. In turn, transcription is influenced by methylation: short methylated genes are poorly expressed, and loss of methylation in the body of a gene leads to enhanced transcription. Our results indicate that genic transcription and DNA methylation are closely interwoven processes.

1,321 citations

Journal ArticleDOI
TL;DR: A substantial reduction in the hazard of death related to allogeneic hematopoietic-cell transplantation, as well as increased long-term survival, over the past decade is found.
Abstract: BACKGROUND Over the past decade, advances have been made in the care of patients undergoing transplantation. We conducted a study to determine whether these advances have improved the outcomes of transplantation. METHODS We analyzed overall mortality, mortality not preceded by relapse, recurrent malignant conditions, and the frequency and severity of major complications of transplantation, including graft-versus-host disease (GVHD) and hepatic, renal, pulmonary, and infectious complications, among 1418 patients who received their first allogeneic transplants at our center in Seattle in the period from 1993 through 1997 and among 1148 patients who received their first allogeneic transplants in the period from 2003 through 2007. Components of the Pretransplant Assessment of Mortality (PAM) score were used in regression models to adjust for the severity of illness at the time of transplantation. RESULTS In the 2003-2007 period, as compared with the 1993-1997 period, we observed significant decreases in mortality not preceded by relapse, both at day 200 (by 60%) and overall (by 52%), the rate of relapse or progression of a malignant condition (by 21%), and overall mortality (by 41%), after adjustment for components of the PAM score. The results were similar when the analyses were limited to patients who received myeloablative conditioning therapy. We also found significant decreases in the risk of severe GVHD; disease caused by viral, bacterial, and fungal infections; and damage to the liver, kidneys, and lungs. CONCLUSIONS We found a substantial reduction in the hazard of death related to allogeneic hematopoietic-cell transplantation, as well as increased long-term survival, over the past decade. Improved outcomes appear to be related to reductions in organ damage, infection, and severe acute GVHD. (Funded by the National Institutes of Health.).

1,311 citations

Journal ArticleDOI
02 Jun 2016-Nature
TL;DR: It is demonstrated that proteogenomic analysis of breast cancer elucidates functional consequences of somatic mutations, narrows candidate nominations for driver genes within large deletions and amplified regions, and identifies therapeutic targets.
Abstract: Somatic mutations have been extensively characterized in breast cancer, but the effects of these genetic alterations on the proteomic landscape remain poorly understood. Here we describe quantitative mass-spectrometry-based proteomic and phosphoproteomic analyses of 105 genomically annotated breast cancers, of which 77 provided high-quality data. Integrated analyses provided insights into the somatic cancer genome including the consequences of chromosomal loss, such as the 5q deletion characteristic of basal-like breast cancer. Interrogation of the 5q trans-effects against the Library of Integrated Network-based Cellular Signatures, connected loss of CETN3 and SKP1 to elevated expression of epidermal growth factor receptor (EGFR), and SKP1 loss also to increased SRC tyrosine kinase. Global proteomic data confirmed a stromal-enriched group of proteins in addition to basal and luminal clusters, and pathway analysis of the phosphoproteome identified a G-protein-coupled receptor cluster that was not readily identified at the mRNA level. In addition to ERBB2, other amplicon-associated highly phosphorylated kinases were identified, including CDK12, PAK1, PTK2, RIPK2 and TLK2. We demonstrate that proteogenomic analysis of breast cancer elucidates the functional consequences of somatic mutations, narrows candidate nominations for driver genes within large deletions and amplified regions, and identifies therapeutic targets.

1,296 citations


Authors

Showing all 12368 results

NameH-indexPapersCitations
Walter C. Willett3342399413322
Robert Langer2812324326306
Meir J. Stampfer2771414283776
JoAnn E. Manson2701819258509
David J. Hunter2131836207050
Peer Bork206697245427
Eric Boerwinkle1831321170971
Ruedi Aebersold182879141881
Bruce M. Psaty1811205138244
Aaron R. Folsom1811118134044
David Baker1731226109377
Frederick W. Alt17157795573
Lily Yeh Jan16246773655
Yuh Nung Jan16246074818
Charles N. Serhan15872884810
Network Information
Related Institutions (5)
Memorial Sloan Kettering Cancer Center
65.3K papers, 4.4M citations

96% related

National Institutes of Health
297.8K papers, 21.3M citations

95% related

University of Texas MD Anderson Cancer Center
92.5K papers, 4.7M citations

95% related

Johns Hopkins University School of Medicine
79.2K papers, 4.7M citations

94% related

Baylor College of Medicine
94.8K papers, 5M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20237
202275
20211,981
20201,995
20191,685
20181,571