scispace - formally typeset
Search or ask a question
Institution

Fred Hutchinson Cancer Research Center

NonprofitCape Town, South Africa
About: Fred Hutchinson Cancer Research Center is a nonprofit organization based out in Cape Town, South Africa. It is known for research contribution in the topics: Population & Transplantation. The organization has 12322 authors who have published 30954 publications receiving 2288772 citations. The organization is also known as: Fred Hutch & The Hutch.


Papers
More filters
Journal ArticleDOI
TL;DR: A large number of head and neck cancers are now related to human papillomavirus infection rather than tobacco and alcohol, and the number of cases is expected to increase in the coming years.
Abstract: Head and Neck Cancer Most head and neck cancers (73% in the United States) are now related to human papillomavirus infection rather than tobacco and alcohol. Primary cancers are largely squamous-ce...

782 citations

Journal ArticleDOI
TL;DR: This review highlights recent studies regarding the molecular mechanisms by which the muscle-specific myogenic bHLH proteins interact with other regulatory factors to coordinate gene expression in a controlled and ordered manner.

780 citations

Journal ArticleDOI
TL;DR: The TILLING (Targeting Induced Local Lesions IN Genomes) method combines the efficiency of ethyl methanesulfonate (EMS)-induced mutagenesis with the ability of denaturing high-performance liquid chromatography (DHPLC) to detect base pair changes by heteroduplex analysis.
Abstract: With the accumulation of large-scale sequence data, emphasis in genomics has shifted from determining gene structure to testing gene function, and this relies on reverse genetic methodology. Here we explore the feasibility of screening for chemically induced mutations in target sequences in Arabidopsis thaliana. Our TILLING (Targeting Induced Local Lesions IN Genomes) method combines the efficiency of ethyl methanesulfonate (EMS)-induced mutagenesis1 with the ability of denaturing high-performance liquid chromatography (DHPLC) to detect base pair changes by heteroduplex analysis2. Importantly, this method generates a wide range of mutant alleles, is fast and automatable, and is applicable to any organism that can be chemically mutagenized.

778 citations

Journal ArticleDOI
TL;DR: Forkhead winged-helix transcription factor Foxp3 serves as the dedicated mediator of the genetic program governing CD25+CD4+ regulatory T cell (T(R)) development and function in mice and the relationship between FOXP3 expression and human T(R) development is addressed.
Abstract: Forkhead winged-helix transcription factor Foxp3 serves as the dedicated mediator of the genetic program governing CD25+CD4+ regulatory T cell (Tr) development and function in mice. In humans, its role in mediating Tr development has been controversial. Furthermore, the fate of Tr precursors in FOXP3 deficiency has yet to be described. Making use of flow cytometric detection of human FOXP3, we have addressed the relationship between FOXP3 expression and human Tr development. Unlike murine Foxp3− T cells, a small subset of human CD4+ and CD8+ T cells transiently up-regulated FOXP3 upon in vitro stimulation. Induced FOXP3, however, did not alter cell-surface phenotype or suppress T helper 1 cytokine expression. Furthermore, only ex vivo FOXP3+ Tr cells persisted after prolonged culture, suggesting that induced FOXP3 did not activate a Tr developmental program in a significant number of cells. FOXP3 flow cytometry was also used to further characterize several patients exhibiting symptoms of immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) with or without FOXP3 mutations. Most patients lacked FOXP3-expressing cells, further solidifying the association between FOXP3 deficiency and immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. Interestingly, one patient bearing a FOXP3 mutation enabling expression of stable FOXP3mut protein exhibited FOXP3mut-expressing cells among a subset of highly activated CD4+ T cells. This observation raises the possibility that the severe autoimmunity in FOXP3 deficiency can be attributed, in part, to aggressive T helper cells that have developed from Tr precursors.

777 citations

Journal ArticleDOI
TL;DR: Immunotherapy with CD19 CAR-T cells in a defined CD4+/CD8+ ratio allowed identification of correlative factors for CAR-t cell expansion, persistence, and toxicity, and facilitated optimization of lymphodepletion that improved disease response and overall and progression-free survival.
Abstract: CD19-specific chimeric antigen receptor (CAR)–modified T cells have antitumor activity in B cell malignancies, but factors that affect toxicity and efficacy have been difficult to define because of differences in lymphodepletion and heterogeneity of CAR-T cells administered to individual patients. We conducted a clinical trial in which CD19 CAR-T cells were manufactured from defined T cell subsets and administered in a 1:1 CD4 + /CD8 + ratio of CAR-T cells to 32 adults with relapsed and/or refractory B cell non-Hodgkin’s lymphoma after cyclophosphamide (Cy)–based lymphodepletion chemotherapy with or without fludarabine (Flu). Patients who received Cy/Flu lymphodepletion had increased CAR-T cell expansion and persistence, and higher response rates [50% complete remission (CR), 72% overall response rate (ORR)] than patients who received Cy-based lymphodepletion without Flu (8% CR, 50% ORR). The CR rate in patients treated with Cy/Flu at the maximally tolerated dose was 64% (82% ORR; n = 11). Cy/Flu minimized the effects of an immune response to the murine single-chain variable fragment component of the CAR, which limited CAR-T cell expansion and clinical efficacy in patients who received Cy-based lymphodepletion without Flu. Severe cytokine release syndrome (sCRS) and grade ≥3 neurotoxicity were observed in 13 and 28% of all patients, respectively. Serum biomarkers, one day after CAR-T cell infusion, correlated with subsequent sCRS and neurotoxicity. Immunotherapy with CD19 CAR-T cells in a defined CD4 + /CD8 + ratio allowed identification of correlative factors for CAR-T cell expansion, persistence, and toxicity, and facilitated optimization of lymphodepletion that improved disease response and overall and progression-free survival.

777 citations


Authors

Showing all 12368 results

NameH-indexPapersCitations
Walter C. Willett3342399413322
Robert Langer2812324326306
Meir J. Stampfer2771414283776
JoAnn E. Manson2701819258509
David J. Hunter2131836207050
Peer Bork206697245427
Eric Boerwinkle1831321170971
Ruedi Aebersold182879141881
Bruce M. Psaty1811205138244
Aaron R. Folsom1811118134044
David Baker1731226109377
Frederick W. Alt17157795573
Lily Yeh Jan16246773655
Yuh Nung Jan16246074818
Charles N. Serhan15872884810
Network Information
Related Institutions (5)
Memorial Sloan Kettering Cancer Center
65.3K papers, 4.4M citations

96% related

National Institutes of Health
297.8K papers, 21.3M citations

95% related

University of Texas MD Anderson Cancer Center
92.5K papers, 4.7M citations

95% related

Johns Hopkins University School of Medicine
79.2K papers, 4.7M citations

94% related

Baylor College of Medicine
94.8K papers, 5M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20237
202275
20211,981
20201,995
20191,685
20181,571