scispace - formally typeset
Search or ask a question
Institution

Fred Hutchinson Cancer Research Center

NonprofitCape Town, South Africa
About: Fred Hutchinson Cancer Research Center is a nonprofit organization based out in Cape Town, South Africa. It is known for research contribution in the topics: Population & Transplantation. The organization has 12322 authors who have published 30954 publications receiving 2288772 citations. The organization is also known as: Fred Hutch & The Hutch.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that constitutive Notch1 signaling in hematopoietic cells established immortalized, cytokine-dependent cell lines that generated progeny with either lymphoid or myeloid characteristics both in vitro and in vivo.
Abstract: Hematopoietic stem cells give rise to progeny that either self-renew in an undifferentiated state or lose self-renewal capabilities and commit to lymphoid or myeloid lineages. Here we evaluated whether hematopoietic stem cell self-renewal is affected by the Notch pathway. Notch signaling controls cell fate choices in both invertebrates and vertebrates by inhibiting certain differentiation pathways, thereby permitting cells to either differentiate along an alternative pathway or to self-renew. Notch receptors are present in hematopoietic precursors and Notch signaling enhances the in vitro generation of human and mouse hematopoietic precursors, determines T- or B-cell lineage specification from a common lymphoid precursor and promotes expansion of CD8(+) cells. Here, we demonstrate that constitutive Notch1 signaling in hematopoietic cells established immortalized, cytokine-dependent cell lines that generated progeny with either lymphoid or myeloid characteristics both in vitro and in vivo. These data support a role for Notch signaling in regulating hematopoietic stem cell self-renewal. Furthermore, the establishment of clonal, pluripotent cell lines provides the opportunity to assess mechanisms regulating stem cell commitment and demonstrates a general method for immortalizing stem cell populations for further analysis.

718 citations

Journal ArticleDOI
12 Jun 1986-Nature
TL;DR: During HL60 differentiation, a DNase I hypersensitive site in the chromatin about 300 bases downstream of the 5′ end of of intron 1 increases in intensity relative to other sites, possibly reflecting events associated with the termination of transcription.
Abstract: The c-myc gene product is a nuclear protein1,2 expressed in a wide variety of cell types3. It has been implicated in the control of normal cell growth as well as transformation4–7, but its exact function is unknown. When the human promyelocytic leukaemia cell line HL60 is treated with retinoic acid, the cells differentiate into granulocytes, and there is a reduction in steady state c-myc RNA of more than 10-fold8. Nuclear runoff assays show that this reduction is caused by a corresponding decrease in the transcription of exon 2. However, only a minor decrease in exon 1 transcription is observed upon differentiation. In undifferentiated HL60 cells there is an approximately 3-fold molar excess of exon 1 transcription over exon 2, and this excess increases to about 15-fold in differentiated cells. This observation suggests that a major component of c-myc transcriptional down-regulation in HL60 cells is at the level of elongation rather than at the level of initiation. The position of the elongation block was mapped to the region of the boundary between exon 1 and intron 1. During HL60 differentiation, a DNase I hypersensitive site in the chromatin about 300 bases downstream of the 5′ end of of intron 1 increases in intensity relative to other sites, possibly reflecting events associated with the termination of transcription. Our runoff analysis also revealed transcription of both strands immediately upstream of exon 1 in HL60 cells. The sense strand transcription of this region produces a novel c-myc RNA which initiates several hundred bases upstream of the previously defined promoters and is found in a variety of cell types.

716 citations

Journal ArticleDOI
TL;DR: Results indicate that PDGFs may exert their functions during early embryogenesis by affecting cell survival and patterning in mice carrying a targeted null mutation.
Abstract: Platelet-derived growth factors (PDGFs) have been implicated in the control of cell proliferation, survival and migration. Patch mutant mice harbor a deletion including the PDGF alpha receptor gene and exhibit defects of neural crest origin which affect pigmentation in heterozygotes and cranial bones in homozygotes. To verify the role of the PDGF alphaR gene during development, mice carrying a targeted null mutation were generated. No pigmentation phenotype was observed in heterozygotes. Homozygotes die during embryonic development and exhibit incomplete cephalic closure similar to that observed in a subset of Patch mutants. In addition, increased apoptosis was observed on pathways followed by migrating neural crest cells. However, alterations in mutant vertebrae, ribs and sternum were also observed, which appear to stem from a deficiency in myotome formation. These results indicate that PDGFs may exert their functions during early embryogenesis by affecting cell survival and patterning.

716 citations

Journal ArticleDOI
15 Apr 1983-Virology
TL;DR: The visualization of parvov virus, polyomavirus, herpes simplex virus, adenovirus, and retrovirus genetic material in infected cell cultures and herpessimplex and adenvirus DNA in paraffin-embedded autopsy tissues is reported.

715 citations

Journal ArticleDOI
TL;DR: A phase 3, multicenter, randomized trial of transplantation of peripheral-blood stem cells versus bone marrow from unrelated donors did not detect significant survival differences, and exploratory analyses of secondary end points indicated that peripheral- Blood stem cells may reduce the risk of graft failure, whereas bone marrow may reduceThe risk of chronic GVHD.
Abstract: BACKGROUND Randomized trials have shown that the transplantation of filgrastim-mobilized peripheral-blood stem cells from HLA-identical siblings accelerates engraftment but increases the risks of acute and chronic graft-versus-host disease (GVHD), as compared with the transplantation of bone marrow. Some studies have also shown that peripheral-blood stem cells are associated with a decreased rate of relapse and improved survival among recipients with high-risk leukemia. METHODS We conducted a phase 3, multicenter, randomized trial of transplantation of peripheral-blood stem cells versus bone marrow from unrelated donors to compare 2-year survival probabilities with the use of an intention-to-treat analysis. Between March 2004 and September 2009, we enrolled 551 patients at 48 centers. Patients were randomly assigned in a 1:1 ratio to peripheral-blood stem-cell or bone marrow transplantation, stratified according to transplantation center and disease risk. The median follow-up of surviving patients was 36 months (interquartile range, 30 to 37). RESULTS The overall survival rate at 2 years in the peripheral-blood group was 51% (95% confidence interval [CI], 45 to 57), as compared with 46% (95% CI, 40 to 52) in the bone marrow group (P = 0.29), with an absolute difference of 5 percentage points (95% CI, −3 to 14). The overall incidence of graft failure in the peripheral-blood group was 3% (95% CI, 1 to 5), versus 9% (95% CI, 6 to 13) in the bone marrow group (P = 0.002). The incidence of chronic GVHD at 2 years in the peripheral-blood group was 53% (95% CI, 45 to 61), as compared with 41% (95% CI, 34 to 48) in the bone marrow group (P = 0.01). There were no significant between-group differences in the incidence of acute GVHD or relapse. CONCLUSIONS We did not detect significant survival differences between peripheral-blood stem-cell and bone marrow transplantation from unrelated donors. Exploratory analyses of secondary end points indicated that peripheral-blood stem cells may reduce the risk of graft failure, whereas bone marrow may reduce the risk of chronic GVHD. (Funded by the National Heart, Lung, and Blood Institute–National Cancer Institute and others; ClinicalTrials.gov number, NCT00075816.)

715 citations


Authors

Showing all 12368 results

NameH-indexPapersCitations
Walter C. Willett3342399413322
Robert Langer2812324326306
Meir J. Stampfer2771414283776
JoAnn E. Manson2701819258509
David J. Hunter2131836207050
Peer Bork206697245427
Eric Boerwinkle1831321170971
Ruedi Aebersold182879141881
Bruce M. Psaty1811205138244
Aaron R. Folsom1811118134044
David Baker1731226109377
Frederick W. Alt17157795573
Lily Yeh Jan16246773655
Yuh Nung Jan16246074818
Charles N. Serhan15872884810
Network Information
Related Institutions (5)
Memorial Sloan Kettering Cancer Center
65.3K papers, 4.4M citations

96% related

National Institutes of Health
297.8K papers, 21.3M citations

95% related

University of Texas MD Anderson Cancer Center
92.5K papers, 4.7M citations

95% related

Johns Hopkins University School of Medicine
79.2K papers, 4.7M citations

94% related

Baylor College of Medicine
94.8K papers, 5M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20237
202275
20211,981
20201,995
20191,685
20181,571