scispace - formally typeset
Search or ask a question
Institution

Freescale Semiconductor

About: Freescale Semiconductor is a based out in . It is known for research contribution in the topics: Layer (electronics) & Signal. The organization has 7673 authors who have published 10781 publications receiving 149123 citations. The organization is also known as: Freescale Semiconductor, Inc..


Papers
More filters
Patent
01 Jun 1992
TL;DR: In this article, a Power On Reset signal is asserted during power on reset initialization and negated when the power-on-reset initialization is completed, and the data output of a latch (83) is a PON signal.
Abstract: A method and apparatus for performing power on reset initialization in a data processing system (40). In one form, the present invention uses a circuit (71) to ensure that a node (65) always power up to the correct logic level. This node (65) can then be used to initialize a latch (83) so that the latch (83) always drives a predetermined logic level at its data output when the latch (83) powers up. The data output of latch (83) is a Power On Reset signal which is asserted during power on reset initialization and which is negated when power on reset initialization is completed.

49 citations

Patent
06 Sep 1996
TL;DR: In this paper, a phase and frequency detector (21) outputs an average of error between a feedback delay clock and a reference clock to the digital loop filter (12), which utilizes a non binary weight scheme to minimize the number of bits changing states.
Abstract: A phase locked loop (10) with a phase detector (11), a digital loop filter (12), a digital controlled oscillator (13) and a divide-by-N circuit (14) generates a periodic signal which has a predetermined phase and voltage related to a reference clock signal. A phase and frequency detector (21) outputs an average of error between a feedback delay clock and a reference clock to the digital loop filter (12). The digital loop filter (12) processes the phase detector (11) output and the inband quantization noise utilizing a sigma delta converter. The digital loop filter (12) utilizes a non binary weight scheme to minimize the number of bits changing states. The digital controlled oscillator (13) generates a loop clock signal utilizing a plurality of digital programmable delay elements. A divide-by-N circuit (14) performs a divide by 2560.

49 citations

Patent
13 Jan 2010
TL;DR: In this article, a logic low to the first potential, which may be ground, and then further reducing the applied voltage, the requirements on the source of the second potential are reduced.
Abstract: A method of writing data to a selected column of a memory (10) includes selecting a first column. The data writing is initiated by applying a logic high to a first bit line (BL0) of the first column and a first potential to a second bit line (BLB0) of the first column that is lower than the logic high. The first potential is removed and a second potential is applied to the second bit line. The second potential is less than the first potential. The first potential may be ground (VSS), and the second potential may be a negative voltage (VNEG). Reducing the write voltage for the bit line that is receiving a logic low improves its ability to be written. By first bringing the logic low to the first potential, which may be ground, and then further reducing the applied voltage, the requirements on the source of the second potential are reduced.

49 citations

Patent
26 Sep 1985
TL;DR: In this paper, a method of using removable sidewall spacers to minimize the need for mask levels in forming lightly doped drains (LDDS) in the formation of CMOS integrated circuits is presented.
Abstract: A method of using removable sidewall spacers to minimize the need for mask levels in forming lightly doped drains (LDDS) in the formation of CMOS integrated circuits. Aluminum or chemical vapor deposition (CVD) metals such as tungsten are suitable materials to form removable sidewall spacers which exist around CMOS gates during heavily doped source/drain region implants. Conformal materials such as CVD polysilicon may also be employed for this purpose. The sidewall spacers are removed before implantation of the lightly doped drain regions around the gates. This implantation sequence is exactly the reverse of what is currently practiced for lightly doped drain formation.

49 citations

Patent
25 Aug 2005
TL;DR: In this article, the authors describe trenches filled with highly doped polycrystalline semiconductor, extending from the surface into the body of the device for reducing substrate current injection, reducing ON-resistance and/or reducing thermal impedance to the substrate.
Abstract: Structure and method are provided for semiconductor devices. The devices include trenches filled with highly doped polycrystalline semiconductor, extending from the surface into the body of the device for, among other things: (i) reducing substrate current injection, (ii) reducing ON-resistance and/or (iii) reducing thermal impedance to the substrate. For isolated LDMOS devices, the resistance between the lateral isolation wall (tied to the source) and the buried layer is reduced, thereby reducing substrate injection current. When placed in the drain of a lateral device or in the collector of a vertical device, the poly-filled trench effectively enlarges the drain or collector region, thereby lowering the ON-resistance. For devices formed on an oxide isolation layer, the poly-filled trench desirably penetrates this isolation layer thereby improving thermal conduction from the active regions to the substrate. The poly filled trenches are conveniently formed by etch and refill. Significant area savings are also achieved.

49 citations


Authors

Showing all 7673 results

NameH-indexPapersCitations
David Blaauw8775029855
Krishnendu Chakrabarty7999627583
Rajesh Gupta7893624158
Philippe Renaud7777326868
Min Zhao7154724549
Gary L. Miller6330613010
Paul S. Ho6047513444
Ravi Subrahmanyan5935314244
Jing Shi5322210098
A. Alec Talin5231112981
Chi Hou Chan485119504
Lin Shao4838012737
Johan Åkerman483069814
Philip J. Tobin471866502
Alexander A. Demkov473317926
Network Information
Related Institutions (5)
STMicroelectronics
29.5K papers, 300.7K citations

92% related

Texas Instruments
39.2K papers, 751.8K citations

89% related

Intel
68.8K papers, 1.6M citations

87% related

Motorola
38.2K papers, 968.7K citations

86% related

Samsung
163.6K papers, 2M citations

83% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20211
20203
201910
201826
201779
2016267