scispace - formally typeset
Search or ask a question
Institution

Freescale Semiconductor

About: Freescale Semiconductor is a based out in . It is known for research contribution in the topics: Layer (electronics) & Signal. The organization has 7673 authors who have published 10781 publications receiving 149123 citations. The organization is also known as: Freescale Semiconductor, Inc..


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the effect of underbump metallization (UBM) on electromigration (EM) lifetime and failure mechanism has been investigated for Pb-free solder bumps of 97Sn3Ag composition in the temperature range of 110-155°C.
Abstract: The effect of underbump metallization (UBM) on electromigration (EM) lifetime and failure mechanism has been investigated for Pb-free solder bumps of 97Sn3Ag composition in the temperature range of 110–155°C. The EM lifetime of the SnAg Pb-free solders with either Cu or Ni UBM was found to be better than the eutectic SnPb (63Sn37Pb) solders but worse than high-Pb (95Pb5Sn) solders. In the test temperature range, the EM lifetimes were found to be comparable for Cu and Ni UBMs but with different activation energies: 0.64–0.72eV for Cu UBM and 1.03–1.11eV for Ni UBM. EM failure was observed only in solder bumps with electron current flow from UBM to the substrate. Failure analysis revealed that EM damage was initiated by the formation of intermetallic compounds (IMC) at the UBM∕solder interface which was found to be significantly enhanced by mass transport driven by the electron current. Under EM, the continued growth of IMC with the dissolution of the UBM and the accumulation of Kirkendall voids resulted in...

78 citations

Patent
16 Jun 1997
TL;DR: In this paper, a new magnetic random access memory (MRAM) unit is provided suitable for fabricating a MRAM device, which includes a magnetic storage element and a current control element.
Abstract: A new magnetic random access memory (MRAM) unit (30) is provided suitable for fabricating a MRAM device (20). The MRAM cell includes a magnetic storage element (32) and a current control element (33), for example, a diode, connected to the magnetic storage element in series to control a current in the magnetic storage element. The magnetic storage element has two magnetoresistive layers (36,38) separated by a non-magnetic layer (37), for example, aluminum oxide (Al2 O3). The diode allows a current to flow in only an MRAM cell activated by a column line and a row line.

78 citations

Patent
02 May 2000
TL;DR: In this article, a method for electroplating a copper layer (118) over a wafer (20) powers a cathode of an electro-plating system (10) in a manner that obtains improved copper interconnects.
Abstract: A method for electroplating a copper layer (118) over a wafer (20) powers a cathode of an electroplating system (10) in a manner that obtains improved copper interconnects. A control system (34) powers the cathode of the system (10) with a mix of two or more of: (i) positive low-powered DC cycles (201 or 254); (ii) positive high-powered DC cycles (256 or 310); (iii) low-powered, pulsed, positive-power cycles (306 or 530); (iv) high-powered, pulsed, positive-powered cycles (212, 252, 302, or 352); and/or (v) negative pulsed cycles (214, 304, 510, 528, or 532). The collection of these cycles functions to electroplate copper or a like metal (118) onto the wafer (20). During electroplating, insitu process control and/or endpointing (506, 512, or 520) is performed to further improve the resulting copper interconnect.

78 citations

Journal ArticleDOI
24 Apr 2006
TL;DR: The RF transceiver is integrated with the baseband signal processing and associated passives in a 165-pad package, resulting in the first tri-band 3G radio transceiver with a digital interface which requires no external components.
Abstract: This paper describes the design and performance of the first tri-band (2100, 1900, 800/850 MHz) single-chip 3G cellular transceiver IC for worldwide use. The transceiver has been designed to meet all narrowband blocker, newly proposed Adjacent Channel II, and Category 10 HSDPA (High Speed Downlink Packet Access) requirements. The design is part of a reconfigurable reference platform for multi-band, multi-mode (GSM/EDGE + WCDMA) radios. The zero-IF receiver is comprised of a novel multi-band quadrature mixer, seventh-order baseband filtering, and a novel DC offset correction scheme, which exhibits no settling time or peak switching transients after gain steps. The receiver lineup is designed to optimize HSDPA throughput and minimize sensitivity to analog baseband filter bandwidth variations. The direct-launch transmitter is made up of a third-order baseband filter, an I/Q modulator with variable gain, an integrated transformer, an RF variable gain amplifier, and a power amplifier driver. At +9.5-dBm output power, the transmitter achieves an error vector magnitude (EVM) of 4%. Fractional-N synthesizers achieve fast lock times of 50 /spl mu/s (150 /spl mu/s) within 20 ppm (0.1 ppm). Automatically calibrated, integrated VCOs achieve a 1.6-GHz tuning range to facilitate coverage over all six 3GPP frequency bands. The IC draws 34 mA in receive (18-mA receiver plus 16-mA fractional-N PLL/VCO) and 50 to 62 mA in transmit (-76 dBm to +9.5 dBm), including PLL/VCO, using a 2.775-V supply voltage. The RF transceiver is integrated with the baseband signal processing and associated passives in a 165-pad package, resulting in the first tri-band 3G radio transceiver with a digital interface which requires no external components.

78 citations

Patent
29 Sep 1989
TL;DR: In this article, the metal layer coverage is improved by utilizing a multiple-step metallization process, where a thick portion of a metal layer is deposited on a semiconductor wafer at a cold temperature and the remaining amount of metal is deposited in a second step as the temperature is ramped up to allow for reflow of the metal layers through grain growth, recrystallization and bulk diffusion.
Abstract: Metal step coverage is improved by utilizing a multiple step metallization process. In the first step, a thick portion of a metal layer is deposited on a semiconductor wafer at a cold temperature. The remaining amount of metal is deposited in a second step as the temperature is ramped up to allow for reflow of the metal layer through grain growth, recrystallization and bulk diffusion. The thick portion of the metal layer deposited at the cold temperature is of adequate thickness so that it remains continuous at the higher temperature and enhances via filling.

77 citations


Authors

Showing all 7673 results

NameH-indexPapersCitations
David Blaauw8775029855
Krishnendu Chakrabarty7999627583
Rajesh Gupta7893624158
Philippe Renaud7777326868
Min Zhao7154724549
Gary L. Miller6330613010
Paul S. Ho6047513444
Ravi Subrahmanyan5935314244
Jing Shi5322210098
A. Alec Talin5231112981
Chi Hou Chan485119504
Lin Shao4838012737
Johan Åkerman483069814
Philip J. Tobin471866502
Alexander A. Demkov473317926
Network Information
Related Institutions (5)
STMicroelectronics
29.5K papers, 300.7K citations

92% related

Texas Instruments
39.2K papers, 751.8K citations

89% related

Intel
68.8K papers, 1.6M citations

87% related

Motorola
38.2K papers, 968.7K citations

86% related

Samsung
163.6K papers, 2M citations

83% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20211
20203
201910
201826
201779
2016267