scispace - formally typeset

Institution

French Institute for Research in Computer Science and Automation

GovernmentLe Chesnay, France
About: French Institute for Research in Computer Science and Automation is a(n) government organization based out in Le Chesnay, France. It is known for research contribution in the topic(s): Population & Cluster analysis. The organization has 13012 authors who have published 38653 publication(s) receiving 1318995 citation(s). The organization is also known as: INRIA & Institute for national research in information science and automatic control.


Papers
More filters
Posted Content
Abstract: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic and commercial settings. Source code, binaries, and documentation can be downloaded from this http URL.

28,898 citations

Proceedings ArticleDOI
20 Jun 2005
TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.
Abstract: We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds.

28,803 citations

Proceedings ArticleDOI
17 Jun 2006
TL;DR: This paper presents a method for recognizing scene categories based on approximate global geometric correspondence that exceeds the state of the art on the Caltech-101 database and achieves high accuracy on a large database of fifteen natural scene categories.
Abstract: This paper presents a method for recognizing scene categories based on approximate global geometric correspondence. This technique works by partitioning the image into increasingly fine sub-regions and computing histograms of local features found inside each sub-region. The resulting "spatial pyramid" is a simple and computationally efficient extension of an orderless bag-of-features image representation, and it shows significantly improved performance on challenging scene categorization tasks. Specifically, our proposed method exceeds the state of the art on the Caltech-101 database and achieves high accuracy on a large database of fifteen natural scene categories. The spatial pyramid framework also offers insights into the success of several recently proposed image descriptions, including Torralba’s "gist" and Lowe’s SIFT descriptors.

8,415 citations

Journal ArticleDOI
Abstract: In the Python world, NumPy arrays are the standard representation for numerical data and enable efficient implementation of numerical computations in a high-level language. As this effort shows, NumPy performance can be improved through three techniques: vectorizing calculations, avoiding copying data in memory, and minimizing operation counts.

7,607 citations

Journal ArticleDOI
TL;DR: It is observed that the ranking of the descriptors is mostly independent of the interest region detector and that the SIFT-based descriptors perform best and Moments and steerable filters show the best performance among the low dimensional descriptors.
Abstract: In this paper, we compare the performance of descriptors computed for local interest regions, as, for example, extracted by the Harris-Affine detector [Mikolajczyk, K and Schmid, C, 2004]. Many different descriptors have been proposed in the literature. It is unclear which descriptors are more appropriate and how their performance depends on the interest region detector. The descriptors should be distinctive and at the same time robust to changes in viewing conditions as well as to errors of the detector. Our evaluation uses as criterion recall with respect to precision and is carried out for different image transformations. We compare shape context [Belongie, S, et al., April 2002], steerable filters [Freeman, W and Adelson, E, Setp. 1991], PCA-SIFT [Ke, Y and Sukthankar, R, 2004], differential invariants [Koenderink, J and van Doorn, A, 1987], spin images [Lazebnik, S, et al., 2003], SIFT [Lowe, D. G., 1999], complex filters [Schaffalitzky, F and Zisserman, A, 2002], moment invariants [Van Gool, L, et al., 1996], and cross-correlation for different types of interest regions. We also propose an extension of the SIFT descriptor and show that it outperforms the original method. Furthermore, we observe that the ranking of the descriptors is mostly independent of the interest region detector and that the SIFT-based descriptors perform best. Moments and steerable filters show the best performance among the low dimensional descriptors.

6,855 citations


Authors

Showing all 13012 results

NameH-indexPapersCitations
Cordelia Schmid135464103925
Bernt Schiele13056870032
Francis Bach11048454944
Jian Sun109360239387
Pascal Fua10261449751
Nicholas Ayache9762443140
Olivier Bernard9679037878
Laurent D. Cohen9441742709
Peter Sturm9354839119
Guy Orban9345526178
Sebastien Ourselin91111634683
François Fleuret9193642585
Katrin Amunts8943835069
Tamer Basar8897734903
Nassir Navab88137541537
Network Information
Related Institutions (5)
Microsoft

86.9K papers, 4.1M citations

94% related

Google

39.8K papers, 2.1M citations

93% related

Carnegie Mellon University

104.3K papers, 5.9M citations

93% related

Eindhoven University of Technology

52.9K papers, 1.5M citations

90% related

Polytechnic University of Catalonia

45.3K papers, 949.3K citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202225
20211,373
20201,499
20191,637
20181,597
20171,747