scispace - formally typeset
Search or ask a question

Showing papers by "French Institute for Research in Computer Science and Automation published in 2009"


Proceedings ArticleDOI
14 Jun 2009
TL;DR: A new online optimization algorithm for dictionary learning is proposed, based on stochastic approximations, which scales up gracefully to large datasets with millions of training samples, and leads to faster performance and better dictionaries than classical batch algorithms for both small and large datasets.
Abstract: Sparse coding---that is, modelling data vectors as sparse linear combinations of basis elements---is widely used in machine learning, neuroscience, signal processing, and statistics. This paper focuses on learning the basis set, also called dictionary, to adapt it to specific data, an approach that has recently proven to be very effective for signal reconstruction and classification in the audio and image processing domains. This paper proposes a new online optimization algorithm for dictionary learning, based on stochastic approximations, which scales up gracefully to large datasets with millions of training samples. A proof of convergence is presented, along with experiments with natural images demonstrating that it leads to faster performance and better dictionaries than classical batch algorithms for both small and large datasets.

2,313 citations


Posted Content
TL;DR: A new online optimization algorithm is proposed, based on stochastic approximations, which scales up gracefully to large data sets with millions of training samples, and extends naturally to various matrix factorization formulations, making it suitable for a wide range of learning problems.
Abstract: Sparse coding--that is, modelling data vectors as sparse linear combinations of basis elements--is widely used in machine learning, neuroscience, signal processing, and statistics. This paper focuses on the large-scale matrix factorization problem that consists of learning the basis set, adapting it to specific data. Variations of this problem include dictionary learning in signal processing, non-negative matrix factorization and sparse principal component analysis. In this paper, we propose to address these tasks with a new online optimization algorithm, based on stochastic approximations, which scales up gracefully to large datasets with millions of training samples, and extends naturally to various matrix factorization formulations, making it suitable for a wide range of learning problems. A proof of convergence is presented, along with experiments with natural images and genomic data demonstrating that it leads to state-of-the-art performance in terms of speed and optimization for both small and large datasets.

2,256 citations



Proceedings ArticleDOI
01 Sep 2009
TL;DR: Experimental results in image denoising and demosaicking tasks with synthetic and real noise show that the proposed method outperforms the state of the art, making it possible to effectively restore raw images from digital cameras at a reasonable speed and memory cost.
Abstract: We propose in this paper to unify two different approaches to image restoration: On the one hand, learning a basis set (dictionary) adapted to sparse signal descriptions has proven to be very effective in image reconstruction and classification tasks. On the other hand, explicitly exploiting the self-similarities of natural images has led to the successful non-local means approach to image restoration. We propose simultaneous sparse coding as a framework for combining these two approaches in a natural manner. This is achieved by jointly decomposing groups of similar signals on subsets of the learned dictionary. Experimental results in image denoising and demosaicking tasks with synthetic and real noise show that the proposed method outperforms the state of the art, making it possible to effectively restore raw images from digital cameras at a reasonable speed and memory cost.

1,812 citations


Proceedings ArticleDOI
20 Jun 2009
TL;DR: This paper automatically discover relevant scene classes and their correlation with human actions, and shows how to learn selected scene classes from video without manual supervision and develops a joint framework for action and scene recognition and demonstrates improved recognition of both in natural video.
Abstract: This paper exploits the context of natural dynamic scenes for human action recognition in video. Human actions are frequently constrained by the purpose and the physical properties of scenes and demonstrate high correlation with particular scene classes. For example, eating often happens in a kitchen while running is more common outdoors. The contribution of this paper is three-fold: (a) we automatically discover relevant scene classes and their correlation with human actions, (b) we show how to learn selected scene classes from video without manual supervision and (c) we develop a joint framework for action and scene recognition and demonstrate improved recognition of both in natural video. We use movie scripts as a means of automatic supervision for training. For selected action classes we identify correlated scene classes in text and then retrieve video samples of actions and scenes for training using script-to-video alignment. Our visual models for scenes and actions are formulated within the bag-of-features framework and are combined in a joint scene-action SVM-based classifier. We report experimental results and validate the method on a new large dataset with twelve action classes and ten scene classes acquired from 69 movies.

1,259 citations


Journal ArticleDOI
TL;DR: A new texture feature called center-symmetric local binary pattern (CS-LBP) is introduced that is a modified version of the well-known localbinary pattern (LBP), and is computationally simpler than the SIFT.

1,172 citations


Journal ArticleDOI
TL;DR: The ability of these CO2 consuming microalgae to purify biogas and concentrate methane is discussed, and anaerobic digestion of the whole biomass appears to be the optimal strategy on an energy balance basis for the energetic recovery of cell biomass.

1,153 citations


Journal ArticleDOI
TL;DR: This paper reports on the development and formal verification of CompCert, a compiler from Clight (a large subset of the C programming language) to PowerPC assembly code, using the Coq proof assistant both for programming the compiler and for proving its correctness.
Abstract: This paper reports on the development and formal verification (proof of semantic preservation) of CompCert, a compiler from Clight (a large subset of the C programming language) to PowerPC assembly code, using the Coq proof assistant both for programming the compiler and for proving its correctness. Such a verified compiler is useful in the context of critical software and its formal verification: the verification of the compiler guarantees that the safety properties proved on the source code hold for the executable compiled code as well.

1,124 citations


Proceedings ArticleDOI
29 Sep 2009
TL;DR: Two methods for learning robust distance measures are presented: a logistic discriminant approach which learns the metric from a set of labelled image pairs (LDML) and a nearest neighbour approach which computes the probability for two images to belong to the same class (MkNN).
Abstract: Face identification is the problem of determining whether two face images depict the same person or not. This is difficult due to variations in scale, pose, lighting, background, expression, hairstyle, and glasses. In this paper we present two methods for learning robust distance measures: (a) a logistic discriminant approach which learns the metric from a set of labelled image pairs (LDML) and (b) a nearest neighbour approach which computes the probability for two images to belong to the same class (MkNN). We evaluate our approaches on the Labeled Faces in the Wild data set, a large and very challenging data set of faces from Yahoo! News. The evaluation protocol for this data set defines a restricted setting, where a fixed set of positive and negative image pairs is given, as well as an unrestricted one, where faces are labelled by their identity. We are the first to present results for the unrestricted setting, and show that our methods benefit from this richer training data, much more so than the current state-of-the-art method. Our results of 79.3% and 87.5% correct for the restricted and unrestricted setting respectively, significantly improve over the current state-of-the-art result of 78.5%. Confidence scores obtained for face identification can be used for many applications e.g. clustering or recognition from a single training example. We show that our learned metrics also improve performance for these tasks.

913 citations


Proceedings ArticleDOI
01 Sep 2009
TL;DR: This work proposes TagProp, a discriminatively trained nearest neighbor model that allows the integration of metric learning by directly maximizing the log-likelihood of the tag predictions in the training set, and introduces a word specific sigmoidal modulation of the weighted neighbor tag predictions to boost the recall of rare words.
Abstract: Image auto-annotation is an important open problem in computer vision. For this task we propose TagProp, a discriminatively trained nearest neighbor model. Tags of test images are predicted using a weighted nearest-neighbor model to exploit labeled training images. Neighbor weights are based on neighbor rank or distance. TagProp allows the integration of metric learning by directly maximizing the log-likelihood of the tag predictions in the training set. In this manner, we can optimally combine a collection of image similarity metrics that cover different aspects of image content, such as local shape descriptors, or global color histograms. We also introduce a word specific sigmoidal modulation of the weighted neighbor tag predictions to boost the recall of rare words. We investigate the performance of different variants of our model and compare to existing work. We present experimental results for three challenging data sets. On all three, TagProp makes a marked improvement as compared to the current state-of-the-art.

739 citations


Journal ArticleDOI
TL;DR: An integral concept for tractography to describe crossing and splitting fibre bundles based on the fibre orientation distribution function (ODF) estimated from high angular resolution diffusion imaging (HARDI) is proposed and new deterministic and new probabilistic tractography algorithms using the full multidirectional information obtained through use of the fibre ODF are developed.
Abstract: We propose an integral concept for tractography to describe crossing and splitting fibre bundles based on the fibre orientation distribution function (ODF) estimated from high angular resolution diffusion imaging (HARDI). We show that in order to perform accurate probabilistic tractography, one needs to use a fibre ODF estimation and not the diffusion ODF. We use a new fibre ODF estimation obtained from a sharpening deconvolution transform (SDT) of the diffusion ODF reconstructed from q-ball imaging (QBI). This SDT provides new insight into the relationship between the HARDI signal, the diffusion ODF, and the fibre ODF. We demonstrate that the SDT agrees with classical spherical deconvolution and improves the angular resolution of QBI. Another important contribution of this paper is the development of new deterministic and new probabilistic tractography algorithms using the full multidirectional information obtained through use of the fibre ODF. An extensive comparison study is performed on human brain datasets comparing our new deterministic and probabilistic tracking algorithms in complex fibre crossing regions. Finally, as an application of our new probabilistic tracking, we quantify the reconstruction of transcallosal fibres intersecting with the corona radiata and the superior longitudinal fasciculus in a group of eight subjects. Most current diffusion tensor imaging (DTI)-based methods neglect these fibres, which might lead to incorrect interpretations of brain functions.

Proceedings Article
11 Jul 2009
TL;DR: A key observation of CDCL solvers behavior on this family of benchmarks is reported and an unsuspected side effect of their particular Clause Learning scheme is explained, allowing this work to solve an important, still open, question: How to designing a fast, static, accurate, and predictive measure of new learnt clauses pertinence.
Abstract: Beside impressive progresses made by SAT solvers over the last ten years, only few works tried to understand why Conflict Directed Clause Learning algorithms (CDCL) are so strong and efficient on most industrial applications. We report in this work a key observation of CDCL solvers behavior on this family of benchmarks and explain it by an unsuspected side effect of their particular Clause Learning scheme. This new paradigm allows us to solve an important, still open, question: How to designing a fast, static, accurate, and predictive measure of new learnt clauses pertinence. Our paper is followed by empirical evidences that show how our new learning scheme improves state-of-the art results by an order of magnitude on both SAT and UNSAT industrial problems.

Journal ArticleDOI
TL;DR: A variant of the basic algorithm for the stochastic, multi-armed bandit problem that takes into account the empirical variance of the different arms is considered, providing the first analysis of the expected regret for such algorithms.

Journal ArticleDOI
TL;DR: Results on real images demonstrate that the proposed adaptation of the nonlocal (NL)-means filter for speckle reduction in ultrasound (US) images is able to preserve accurately edges and structural details of the image.
Abstract: In image processing, restoration is expected to improve the qualitative inspection of the image and the performance of quantitative image analysis techniques. In this paper, an adaptation of the nonlocal (NL)-means filter is proposed for speckle reduction in ultrasound (US) images. Originally developed for additive white Gaussian noise, we propose to use a Bayesian framework to derive a NL-means filter adapted to a relevant ultrasound noise model. Quantitative results on synthetic data show the performances of the proposed method compared to well-established and state-of-the-art methods. Results on real images demonstrate that the proposed method is able to preserve accurately edges and structural details of the image.

Journal ArticleDOI
TL;DR: Four new reinforcement learning algorithms based on actor-critic, natural-gradient and function-approximation ideas are presented, and their convergence proofs are provided, providing the first convergence proofs and the first fully incremental algorithms.

Posted Content
TL;DR: In this paper, the authors consider the empirical risk minimization problem for linear supervised learning, with regularization by structured sparsityinducing norms, defined as sums of Euclidean norms on certain subsets of variables.
Abstract: We consider the empirical risk minimization problem for linear supervised learning, with regularization by structured sparsity-inducing norms. These are defined as sums of Euclidean norms on certain subsets of variables, extending the usual $\ell_1$-norm and the group $\ell_1$-norm by allowing the subsets to overlap. This leads to a specific set of allowed nonzero patterns for the solutions of such problems. We first explore the relationship between the groups defining the norm and the resulting nonzero patterns, providing both forward and backward algorithms to go back and forth from groups to patterns. This allows the design of norms adapted to specific prior knowledge expressed in terms of nonzero patterns. We also present an efficient active set algorithm, and analyze the consistency of variable selection for least-squares linear regression in low and high-dimensional settings.

Proceedings ArticleDOI
08 Jun 2009
TL;DR: This paper presents new stability results that do not suffer from the restrictions of existing stability results, and makes it possible to compare the persistence diagrams of functions defined over different spaces, thus enabling a variety of new applications of the concept of persistence.
Abstract: Topological persistence has proven to be a key concept for the study of real-valued functions defined over topological spaces. Its validity relies on the fundamental property that the persistence diagrams of nearby functions are close. However, existing stability results are restricted to the case of continuous functions defined over triangulable spaces. In this paper, we present new stability results that do not suffer from the above restrictions. Furthermore, by working at an algebraic level directly, we make it possible to compare the persistence diagrams of functions defined over different spaces, thus enabling a variety of new applications of the concept of persistence. Along the way, we extend the definition of persistence diagram to a larger setting, introduce the notions of discretization of a persistence module and associated pixelization map, define a proximity measure between persistence modules, and show how to interpolate between persistence modules, thereby lending a more analytic character to this otherwise algebraic setting. We believe these new theoretical concepts and tools shed new light on the theory of persistence, in addition to simplifying proofs and enabling new applications.

Journal ArticleDOI
TL;DR: This article describes the development and formal verification of a compiler back-end from Cminor (a simple imperative intermediate language) to PowerPC assembly code, using the Coq proof assistant both for programming the compiler and for proving its soundness.
Abstract: This article describes the development and formal verification (proof of semantic preservation) of a compiler back-end from Cminor (a simple imperative intermediate language) to PowerPC assembly code, using the Coq proof assistant both for programming the compiler and for proving its soundness. Such a verified compiler is useful in the context of formal methods applied to the certification of critical software: the verification of the compiler guarantees that the safety properties proved on the source code hold for the executable compiled code as well.

Book ChapterDOI
29 Jun 2009
TL;DR: A new approach to solving cryptographic problems by adapting both the problem description and the solver synchronously instead of tweaking just one of them is presented, which was able to solve a well-researched stream cipher 26 times faster than was previously possible.
Abstract: Cryptography ensures the confidentiality and authenticity of information but often relies on unproven assumptions. SAT solvers are a powerful tool to test the hardness of certain problems and have successfully been used to test hardness assumptions. This paper extends a SAT solver to efficiently work on cryptographic problems. The paper further illustrates how SAT solvers process cryptographic functions using automatically generated visualizations, introduces techniques for simplifying the solving process by modifying cipher representations, and demonstrates the feasibility of the approach by solving three stream ciphers. To optimize a SAT solver for cryptographic problems, we extended the solver's input language to support the XOR operation that is common in cryptography. To better understand the inner workings of the adapted solver and to identify bottlenecks, we visualize its execution. Finally, to improve the solving time significantly, we remove these bottlenecks by altering the function representation and by pre-parsing the resulting system of equations. The main contribution of this paper is a new approach to solving cryptographic problems by adapting both the problem description and the solver synchronously instead of tweaking just one of them. Using these techniques, we were able to solve a well-researched stream cipher 26 times faster than was previously possible.

Book ChapterDOI
23 Jun 2009
TL;DR: Aron is a freely available library dedicated to the static analysis of the numerical variables of programs by abstract interpretation, and its goal is to provide analysis implementers with ready-to-use numerical abstractions under a unified API.
Abstract: This article describes Apron , a freely available library dedicated to the static analysis of the numerical variables of programs by abstract interpretation. Its goal is threefold: provide analysis implementers with ready-to-use numerical abstractions under a unified API, encourage the research in numerical abstract domains by providing a platform for integration and comparison, and provide teaching and demonstration tools to disseminate knowledge on abstract interpretation.

Book ChapterDOI
03 Oct 2009
TL;DR: The main result is that the required exploration-exploitation trade-offs are qualitatively different, in view of a general lower bound on the simple regret in terms of the cumulative regret.
Abstract: We consider the framework of stochastic multi-armed bandit problems and study the possibilities and limitations of strategies that perform an online exploration of the arms. The strategies are assessed in terms of their simple regret, a regret notion that captures the fact that exploration is only constrained by the number of available rounds (not necessarily known in advance), in contrast to the case when the cumulative regret is considered and when exploitation needs to be performed at the same time.We believe that this performance criterion is suited to situations when the cost of pulling an arm is expressed in terms of resources rather than rewards. We discuss the links between the simple and the cumulative regret. The main result is that the required exploration-exploitation trade-offs are qualitatively different, in view of a general lower bound on the simple regret in terms of the cumulative regret.

Proceedings ArticleDOI
20 Jun 2009
TL;DR: Experimental results on three reference datasets show that the proposed strategy to handle visual bursts for bag-of-features based image search systems significantly and consistently outperforms the state of the art.
Abstract: Burstiness, a phenomenon initially observed in text retrieval, is the property that a given visual element appears more times in an image than a statistically independent model would predict. In the context of image search, burstiness corrupts the visual similarity measure, i.e., the scores used to rank the images. In this paper, we propose a strategy to handle visual bursts for bag-of-features based image search systems. Experimental results on three reference datasets show that our method significantly and consistently outperforms the state of the art.

Proceedings ArticleDOI
08 Jul 2009
TL;DR: This paper evaluates the search accuracy and complexity of the global GIST descriptor for two applications, for which a local description is usually preferred: same location/object recognition and copy detection, and proposes an indexing strategy for global descriptors that optimizes the trade-off between memory usage and precision.
Abstract: The GIST descriptor has recently received increasing attention in the context of scene recognition. In this paper we evaluate the search accuracy and complexity of the global GIST descriptor for two applications, for which a local description is usually preferred: same location/object recognition and copy detection. We identify the cases in which a global description can reasonably be used.The comparison is performed against a state-of-the-art bag-of-features representation. To evaluate the impact of GIST's spatial grid, we compare GIST with a bag-of-features restricted to the same spatial grid as in GIST.Finally, we propose an indexing strategy for global descriptors that optimizes the trade-off between memory usage and precision. Our scheme provides a reasonable accuracy in some widespread application cases together with very high efficiency: In our experiments, querying an image database of 110 million images takes 0.18 second per image on a single machine. For common copyright attacks, this efficiency is obtained without noticeably sacrificing the search accuracy compared with state-of-the-art approaches.

Proceedings ArticleDOI
20 Jun 2009
TL;DR: A 3D feature detector and feature descriptor for uniformly triangulated meshes, invariant to changes in rotation, translation, and scale are proposed and defined generically for any scalar function, e.g., local curvature.
Abstract: In this paper we revisit local feature detectors/descriptors developed for 2D images and extend them to the more general framework of scalar fields defined on 2D manifolds. We provide methods and tools to detect and describe features on surfaces equiped with scalar functions, such as photometric information. This is motivated by the growing need for matching and tracking photometric surfaces over temporal sequences, due to recent advancements in multiple camera 3D reconstruction. We propose a 3D feature detector (MeshDOG) and a 3D feature descriptor (MeshHOG) for uniformly triangulated meshes, invariant to changes in rotation, translation, and scale. The descriptor is able to capture the local geometric and/or photometric properties in a succinct fashion. Moreover, the method is defined generically for any scalar function, e.g., local curvature. Results with matching rigid and non-rigid meshes demonstrate the interest of the proposed framework.

Journal ArticleDOI
12 Nov 2009-Neuron
TL;DR: It is verified that brain regions encoding preferences can valuate various categories of objects and further test whether they still express preferences when attention is diverted to another task.

Journal ArticleDOI
01 Nov 2009
TL;DR: This white paper synthesizes the motivations, observations and research issues considered as determinant of several complimentary experts of HPC in applications, programming models, distributed systems and system management.
Abstract: Over the past few years resilience has became a major issue for high-performance computing (HPC) systems, in particular in the perspective of large petascale systems and future exascale systems. These systems will typically gather from half a million to several millions of central processing unit (CPU) cores running up to a billion threads. From the current knowledge and observations of existing large systems, it is anticipated that exascale systems will experience various kind of faults many times per day. It is also anticipated that the current approach for resilience, which relies on automatic or application level checkpoint/ restart, will not work because the time for checkpointing and restarting will exceed the mean time to failure of a full system. This set of projections leaves the community of fault tolerance for HPC systems with a difficult challenge: finding new approaches, which are possibly radically disruptive, to run applications until their normal termination, despite the essentially unstable nature of exascale systems. Yet, the community has only five to six years to solve the problem. This white paper synthesizes the motivations, observations and research issues considered as determinant of several complimentary experts of HPC in applications, programming models, distributed systems and system management.

Proceedings ArticleDOI
23 May 2009
TL;DR: This work compares and contrast the performance and monetary cost-benefits of clouds for desktop grid applications, ranging in computational size and storage and examines performance measurements and monetary expenses of real desktop grids and the Amazon elastic compute cloud.
Abstract: Cloud Computing has taken commercial computing by storm. However, adoption of cloud computing platforms and services by the scientific community is in its infancy as the performance and monetary cost-benefits for scientific applications are not perfectly clear. This is especially true for desktop grids (aka volunteer computing) applications. We compare and contrast the performance and monetary cost-benefits of clouds for desktop grid applications, ranging in computational size and storage. We address the following questions: (i) What are the performance tradeoffs in using one platform over the other? (ii) What are the specific resource requirements and monetary costs of creating and deploying applications on each platform? (iii) In light of those monetary and performance cost-benefits, how do these platforms compare? (iv) Can cloud computing platforms be used in combination with desktop grids to improve cost-effectiveness even further? We examine those questions using performance measurements and monetary expenses of real desktop grids and the Amazon elastic compute cloud.

Journal ArticleDOI
TL;DR: It is shown that the introduction of delayed estimates affords significant improvement in numerical differentiation in noisy environment, and that the implementation in terms of a classical finite impulse response (FIR) digital filter is given.
Abstract: Numerical differentiation in noisy environment is revised through an algebraic approach. For each given order, an explicit formula yielding a pointwise derivative estimation is derived, using elementary differential algebraic operations. These expressions are composed of iterated integrals of the noisy observation signal. We show in particular that the introduction of delayed estimates affords significant improvement. An implementation in terms of a classical finite impulse response (FIR) digital filter is given. Several simulation results are presented.

Journal ArticleDOI
TL;DR: An approach for specifying and executing dynamically adaptive software systems that combines model-driven and aspect-oriented techniques to help engineers tame the complexity of such systems while offering a high degree of automation and validation is presented.
Abstract: Today's society increasingly depends on software systems deployed in large companies, banks, airports, and so on. These systems must be available 24/7 and continuously adapt to varying environmental conditions and requirements. Such dynamically adaptive systems exhibit degrees of variability that depend on user needs and runtime fluctuations in their contexts. The paper presents an approach for specifying and executing dynamically adaptive software systems that combines model-driven and aspect-oriented techniques to help engineers tame the complexity of such systems while offering a high degree of automation and validation.

Proceedings ArticleDOI
09 Jan 2009
TL;DR: This paper theoretically investigates how optimal μ--distributions-finite sets of μ solutions maximizing the hypervolume indicator-are spread over the Pareto front of biobjective problems and derives an explicit lower bound ensuring the presence of the extremes in the optimal distribution.
Abstract: The hypervolume indicator is a set measure used in evolutionary multiobjective optimization to evaluate the performance of search algorithms and to guide the search. Multiobjective evolutionary algorithms using the hypervolume indicator transform multiobjective problems into single objective ones by searching for a finite set of solutions maximizing the corresponding hypervolume indicator. In this paper, we theoretically investigate how those optimal μ--distributions-finite sets of μ solutions maximizing the hypervolume indicator-are spread over the Pareto front of biobjective problems. This problem is of high importance for practical applications as these sets characterize the preferences that the hypervolume indicator encodes, i.e., which types of Pareto set approximations are favored.In particular, we tackle the question whether the hypervolume indicator is biased towards certain regions. For linear fronts we prove that the distribution is uniform with constant distance between two consecutive points. For general fronts where it is presumably impossible to characterize exactly the distribution, we derive a limit result when the number of points grows to infinity proving that the empirical density of points converges to a density proportional to the square root of the negative of the derivative of the front. Our analyses show that it is not the shape of the Pareto front but only its slope that determines how the points that maximize the hypervolume indicator are distributed. Experimental results illustrate that the limit density is a good approximation of the empirical density for small μ. Furthermore, we analyze the issue of where to place the reference point of the indicator such that the extremes of the front can be found if the hypervolume indicator is optimized. We derive an explicit lower bound (possibly infinite) ensuring the presence of the extremes in the optimal distribution. This result contradicts the common belief that the reference point has to be chosen close to the nadir point: for certain types of fronts, we show that no finite reference point allows to have the extremes in the optimal μ-distribution.