scispace - formally typeset
Search or ask a question
Institution

French Institute of Health and Medical Research

GovernmentParis, France
About: French Institute of Health and Medical Research is a government organization based out in Paris, France. It is known for research contribution in the topics: Population & Receptor. The organization has 109367 authors who have published 174236 publications receiving 8365503 citations.
Topics: Population, Receptor, Gene, Immune system, Antigen


Papers
More filters
Journal ArticleDOI
TL;DR: An early rebound (before 5.5 yr) is followed by a significantly higher adiposity level than a later rebound (after 7 yr), which is observed whatever the subject's adiposity at 1 yr.

882 citations

Journal ArticleDOI
TL;DR: The present review discusses the most relevant methodological considerations and highlights specific recommendations regarding number of subjects, sex, subject status, inclusion and exclusion criteria, pre-test conditions, CHO test dose, blood sampling procedures, sampling times, test randomisation and calculation of glycaemic response area under the curve.
Abstract: The glycaemic index (GI) concept was originally introduced to classify different sources of carbohydrate (CHO)-rich foods, usually having an energy content of > 80 % from CHO, to their effect on post-meal glycaemia. It was assumed to apply to foods that primarily deliver available CHO, causing hyperglycaemia. Low-GI foods were classified as being digested and absorbed slowly and high-GI foods as being rapidly digested and absorbed, resulting in different glycaemic responses. Low-GI foods were found to induce benefits on certain risk factors for CVD and diabetes. Accordingly it has been proposed that GI classification of foods and drinks could be useful to help consumers make 'healthy food choices' within specific food groups. Classification of foods according to their impact on blood glucose responses requires a standardised way of measuring such responses. The present review discusses the most relevant methodological considerations and highlights specific recommendations regarding number of subjects, sex, subject status, inclusion and exclusion criteria, pre-test conditions, CHO test dose, blood sampling procedures, sampling times, test randomisation and calculation of glycaemic response area under the curve. All together, these technical recommendations will help to implement or reinforce measurement of GI in laboratories and help to ensure quality of results. Since there is current international interest in alternative ways of expressing glycaemic responses to foods, some of these methods are discussed.

881 citations

Journal ArticleDOI
01 Jun 1988-Brain
TL;DR: The findings suggest that the 2 types of visuomotor mechanisms responsible for the proximal and distal components of visually-directed arm movements are controlled by the parietal cortex and that there should exist a hemisphere asymmetry in the functional organization of these mechanisms.
Abstract: Visually directed arm movements have been studied by film recordings in 10 patients with optic ataxia resulting from unilateral lesions of the parietal region, in 3 cases on the right and in 7 on the left. Half of the patients also underwent visuospatial perceptive tests. The results indicate the following. (1) Optic ataxia is a specific visuomotor disorder, independent of visual space misperception. (2) The proximal and the distal components of the movements are equally affected as shown in reaching and hand orientation tasks. (3) The percentages of spatial and orientation errors quantified, respectively, in these two situations show a different distribution across the different hand-field combinations according to the side of the lesion: whereas the right-damaged patients show a deficit essentially related to a field effect, the left-damaged patients show in addition to the latter an impairment related to a hand effect. These findings suggest that the 2 types of visuomotor mechanisms responsible for the proximal and distal components of visually-directed arm movements are controlled by the parietal cortex and that there should exist a hemisphere asymmetry in the functional organization of these mechanisms. (4) Reconstruction of the lesions drawn from CT scans in 8 of the patients shows a salient and constant involvement of the posterior parietal cortex, always including the intraparietal sulcus and either the superior part of the inferior parietal lobule or more often various parts of the superior parietal lobule. The weak co-occurrence of optic ataxia and hemispatial neglect, and their different lesion sites, indicate a double dissociation between these two symptoms.

881 citations

Journal ArticleDOI
20 Aug 1998-Nature
TL;DR: It is shown that feedback connections facilitate responses to objects moving within the classical receptive field; enhance suppression evoked by background stimuli in the surrounding region; and have the strongest effects for stimuli of low salience.
Abstract: A single visual stimulus activates neurons in many different cortical areas. A major challenge in cortical physiology is to understand how the neural activity in these numerous active zones leads to a unified percept of the visual scene. The anatomical basis for these interactions is the dense network of connections that link the visual areas. Within this network, feedforward connections transmit signals from lower-order areas such as V1 or V2 to higher-order areas. In addition, there is a dense web of feedback connections which, despite their anatomical prominence1,2,3,4, remain functionally mysterious5,6,7,8. Here we show, using reversible inactivation of a higher-order area (monkey area V5/MT), that feedback connections serve to amplify and focus activity of neurons in lower-order areas, and that they are important in the differentiation of figure from ground, particularly in the case of stimuli of low visibility. More specifically, we show that feedback connections facilitate responses to objects moving within the classical receptive field; enhance suppression evoked by background stimuli in the surrounding region; and have the strongest effects for stimuli of low salience.

878 citations

Journal ArticleDOI
TL;DR: It is suggested that this γ-band energy increase reflects both bottom-up (binding of elementary features) and top-down (search for the hidden dog) activation of the same neural assembly coding for the Dalmatian.
Abstract: The coherent representation of an object in the visual system has been suggested to be achieved by the synchronization in the gamma-band (30-70 Hz) of a distributed neuronal assembly. Here we measure variations of high-frequency activity on the human scalp. The experiment is designed to allow the comparison of two different perceptions of the same picture. In the first condition, an apparently meaningless picture that contained a hidden Dalmatian, a neutral stimulus, and a target stimulus (twirled blobs) are presented. After the subject has been trained to perceive the hidden dog and its mirror image, the second part of the recordings is performed (condition 2). The same neutral stimulus is presented, intermixed with the picture of the dog and its mirror image (target stimulus). Early (95 msec) phase-locked (or stimulus-locked) gamma-band oscillations do not vary with stimulus type but can be subdivided into an anterior component (38 Hz) and a posterior component (35 Hz). Nonphase-locked gamma-band oscillations appear with a latency jitter around 280 msec after stimulus onset and disappear in averaged data. They increase in amplitude in response to both target stimuli. They also globally increase in the second condition compared with the first one. It is suggested that this gamma-band energy increase reflects both bottom-up (binding of elementary features) and top-down (search for the hidden dog) activation of the same neural assembly coding for the Dalmatian. The relationships between high- and low-frequency components of the response are discussed, and a possible functional role of each component is suggested.

877 citations


Authors

Showing all 109539 results

NameH-indexPapersCitations
Guido Kroemer2361404246571
Pierre Chambon211884161565
Peer Bork206697245427
Ronald M. Evans199708166722
Raymond J. Dolan196919138540
Matthew Meyerson194553243726
Charles A. Dinarello1901058139668
Julie E. Buring186950132967
Tadamitsu Kishimoto1811067130860
Didier Raoult1733267153016
Giuseppe Remuzzi1721226160440
Zena Werb168473122629
Nahum Sonenberg167647104053
Philippe Froguel166820118816
Gordon J. Freeman164579105193
Network Information
Related Institutions (5)
National Institutes of Health
297.8K papers, 21.3M citations

96% related

Johns Hopkins University School of Medicine
79.2K papers, 4.7M citations

95% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

94% related

Icahn School of Medicine at Mount Sinai
76K papers, 3.7M citations

94% related

Karolinska Institutet
121.1K papers, 6M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202368
2022306
20217,549
20207,367
20196,969
20186,607