scispace - formally typeset
Search or ask a question
Institution

French Institute of Health and Medical Research

GovernmentParis, France
About: French Institute of Health and Medical Research is a government organization based out in Paris, France. It is known for research contribution in the topics: Population & Receptor. The organization has 109367 authors who have published 174236 publications receiving 8365503 citations.


Papers
More filters
Journal ArticleDOI
Dalila Pinto1, Alistair T. Pagnamenta2, Lambertus Klei3, Richard Anney4  +178 moreInstitutions (46)
15 Jul 2010-Nature
TL;DR: The genome-wide characteristics of rare (<1% frequency) copy number variation in ASD are analysed using dense genotyping arrays to reveal many new genetic and functional targets in ASD that may lead to final connected pathways.
Abstract: The autism spectrum disorders (ASDs) are a group of conditions characterized by impairments in reciprocal social interaction and communication, and the presence of restricted and repetitive behaviours. Individuals with an ASD vary greatly in cognitive development, which can range from above average to intellectual disability. Although ASDs are known to be highly heritable ( approximately 90%), the underlying genetic determinants are still largely unknown. Here we analysed the genome-wide characteristics of rare (<1% frequency) copy number variation in ASD using dense genotyping arrays. When comparing 996 ASD individuals of European ancestry to 1,287 matched controls, cases were found to carry a higher global burden of rare, genic copy number variants (CNVs) (1.19 fold, P = 0.012), especially so for loci previously implicated in either ASD and/or intellectual disability (1.69 fold, P = 3.4 x 10(-4)). Among the CNVs there were numerous de novo and inherited events, sometimes in combination in a given family, implicating many novel ASD genes such as SHANK2, SYNGAP1, DLGAP2 and the X-linked DDX53-PTCHD1 locus. We also discovered an enrichment of CNVs disrupting functional gene sets involved in cellular proliferation, projection and motility, and GTPase/Ras signalling. Our results reveal many new genetic and functional targets in ASD that may lead to final connected pathways.

1,919 citations

Journal ArticleDOI
24 Oct 1996-Nature
TL;DR: The characterization of the human Notch3 gene, which was previously mapped to the CADASIL critical region, is reported, indicating that Notch 3 could be the defective protein in CADASil patients.
Abstract: Stroke is the third leading cause of death, and vascular dementia the second cause of dementia after Alzheimer's disease. CADASIL (for cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy) causes a type of stroke and dementia whose key features include recurrent subcortical ischaemic events and vascular dementia and which is associated with diffuse white-matter abnormalities on neuroimaging. Pathological examination reveals multiple small, deep cerebral infarcts, a leukoencephalopathy, and a non-atherosclerotic, non-amyloid angiopathy involving mainly the small cerebral arteries. Severe alterations of vascular smooth-muscle cells are evident on ultrastructural analysis. We have previously mapped the mutant gene to chromosome 19. Here we report the characterization of the human Notch3 gene which we mapped to the CADASIL critical region. We have identified mutations in CADASIL patients that cause serious disruption of this gene, indicating that Notch3 could be the defective protein in CADASIL patients.

1,917 citations

Journal ArticleDOI
Paul Bastard1, Paul Bastard2, Paul Bastard3, Lindsey B. Rosen4, Qian Zhang2, Eleftherios Michailidis2, Hans-Heinrich Hoffmann2, Yu Zhang4, Karim Dorgham1, Quentin Philippot1, Quentin Philippot3, Jérémie Rosain3, Jérémie Rosain1, Vivien Béziat1, Vivien Béziat3, Vivien Béziat2, Jeremy Manry1, Jeremy Manry3, Elana Shaw4, Liis Haljasmägi5, Pärt Peterson5, Lazaro Lorenzo3, Lazaro Lorenzo1, Lucy Bizien1, Lucy Bizien3, Sophie Trouillet-Assant6, Kerry Dobbs4, Adriana Almeida de Jesus4, Alexandre Belot6, Anne Kallaste7, Emilie Catherinot, Yacine Tandjaoui-Lambiotte3, Jérémie Le Pen2, Gaspard Kerner1, Gaspard Kerner3, Benedetta Bigio2, Yoann Seeleuthner3, Yoann Seeleuthner1, Rui Yang2, Alexandre Bolze, András N Spaan8, András N Spaan2, Ottavia M. Delmonte4, Michael S. Abers4, Alessandro Aiuti9, Giorgio Casari9, Vito Lampasona9, Lorenzo Piemonti9, Fabio Ciceri9, Kaya Bilguvar10, Richard P. Lifton10, Richard P. Lifton2, Marc Vasse, David M. Smadja1, Mélanie Migaud1, Mélanie Migaud3, Jérôme Hadjadj1, Benjamin Terrier1, Darragh Duffy11, Lluis Quintana-Murci12, Lluis Quintana-Murci11, Diederik van de Beek13, Lucie Roussel14, Donald C. Vinh14, Stuart G. Tangye15, Stuart G. Tangye16, Filomeen Haerynck17, David Dalmau18, Javier Martinez-Picado19, Javier Martinez-Picado20, Petter Brodin21, Petter Brodin22, Michel C. Nussenzweig2, Michel C. Nussenzweig23, Stéphanie Boisson-Dupuis1, Stéphanie Boisson-Dupuis2, Stéphanie Boisson-Dupuis3, Carlos Rodríguez-Gallego, Guillaume Vogt1, Trine H. Mogensen24, Trine H. Mogensen25, Andrew J. Oler4, Jingwen Gu4, Peter D. Burbelo4, Jeffrey I. Cohen4, Andrea Biondi26, Laura Rachele Bettini26, Mariella D'Angiò26, Paolo Bonfanti26, Patrick Rossignol27, Julien Mayaux1, Frédéric Rieux-Laucat1, Eystein S. Husebye28, Eystein S. Husebye29, Eystein S. Husebye30, Francesca Fusco, Matilde Valeria Ursini, Luisa Imberti31, Alessandra Sottini31, Simone Paghera31, Eugenia Quiros-Roldan32, Camillo Rossi, Riccardo Castagnoli33, Daniela Montagna33, Amelia Licari33, Gian Luigi Marseglia33, Xavier Duval, Jade Ghosn1, Hgid Lab4, Covid Clinicians5, Covid-Storm Clinicians§4, CoV-Contact Cohort§1, Amsterdam Umc Covid Biobank2, Amsterdam Umc Covid Biobank3, Amsterdam Umc Covid Biobank1, Covid Human Genetic Effort2, John S. Tsang4, Raphaela Goldbach-Mansky4, Kai Kisand5, Michail S. Lionakis4, Anne Puel1, Anne Puel3, Anne Puel2, Shen-Ying Zhang3, Shen-Ying Zhang1, Shen-Ying Zhang2, Steven M. Holland4, Guy Gorochov1, Emmanuelle Jouanguy2, Emmanuelle Jouanguy1, Emmanuelle Jouanguy3, Charles M. Rice2, Aurélie Cobat1, Aurélie Cobat3, Aurélie Cobat2, Luigi D. Notarangelo4, Laurent Abel1, Laurent Abel3, Laurent Abel2, Helen C. Su4, Jean-Laurent Casanova 
23 Oct 2020-Science
TL;DR: A means by which individuals at highest risk of life-threatening COVID-19 can be identified is identified, and the hypothesis that neutralizing auto-Abs against type I IFNs may underlie critical CO VID-19 is tested.
Abstract: Interindividual clinical variability in the course of SARS-CoV-2 infection is immense. We report that at least 101 of 987 patients with life-threatening COVID-19 pneumonia had neutralizing IgG auto-Abs against IFN-ω (13 patients), the 13 types of IFN-α (36), or both (52), at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1,227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 were men. A B cell auto-immune phenocopy of inborn errors of type I IFN immunity underlies life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men.

1,913 citations

Journal ArticleDOI
Yukinori Okada1, Yukinori Okada2, Di Wu1, Di Wu3, Di Wu2, Gosia Trynka1, Gosia Trynka2, Towfique Raj1, Towfique Raj2, Chikashi Terao4, Katsunori Ikari, Yuta Kochi, Koichiro Ohmura4, Akari Suzuki, Shinji Yoshida, Robert R. Graham5, A. Manoharan5, Ward Ortmann5, Tushar Bhangale5, Joshua C. Denny6, Robert J. Carroll6, Anne E. Eyler6, Jeff Greenberg7, Joel M. Kremer, Dimitrios A. Pappas8, Lei Jiang9, Jian Yin9, Lingying Ye9, Ding Feng Su9, Jian Yang10, Gang Xie11, E.C. Keystone11, Harm-Jan Westra12, Tõnu Esko1, Tõnu Esko13, Tõnu Esko2, Andres Metspalu13, Xuezhong Zhou14, Namrata Gupta2, Daniel B. Mirel2, Eli A. Stahl15, Dorothee Diogo2, Dorothee Diogo1, Jing Cui1, Jing Cui2, Katherine P. Liao2, Katherine P. Liao1, Michael H. Guo2, Michael H. Guo1, Keiko Myouzen, Takahisa Kawaguchi4, Marieke J H Coenen16, Piet L. C. M. van Riel16, Mart A F J van de Laar17, Henk-Jan Guchelaar18, Tom W J Huizinga18, Philippe Dieudé19, Xavier Mariette20, S. Louis Bridges21, Alexandra Zhernakova18, Alexandra Zhernakova12, René E. M. Toes18, Paul P. Tak22, Paul P. Tak23, Paul P. Tak24, Corinne Miceli-Richard20, So Young Bang25, Hye Soon Lee25, Javier Martin26, Miguel A. Gonzalez-Gay, Luis Rodriguez-Rodriguez27, Solbritt Rantapää-Dahlqvist28, Lisbeth Ärlestig28, Hyon K. Choi1, Hyon K. Choi29, Yoichiro Kamatani30, Pilar Galan19, Mark Lathrop31, Steve Eyre32, Steve Eyre33, John Bowes33, John Bowes32, Anne Barton32, Niek de Vries24, Larry W. Moreland34, Lindsey A. Criswell35, Elizabeth W. Karlson1, Atsuo Taniguchi, Ryo Yamada4, Michiaki Kubo, Jun Liu1, Sang Cheol Bae25, Jane Worthington32, Jane Worthington33, Leonid Padyukov36, Lars Klareskog36, Peter K. Gregersen37, Soumya Raychaudhuri2, Soumya Raychaudhuri1, Barbara E. Stranger38, Philip L. De Jager2, Philip L. De Jager1, Lude Franke12, Peter M. Visscher10, Matthew A. Brown10, Hisashi Yamanaka, Tsuneyo Mimori4, Atsushi Takahashi, Huji Xu9, Timothy W. Behrens5, Katherine A. Siminovitch11, Shigeki Momohara, Fumihiko Matsuda4, Kazuhiko Yamamoto39, Robert M. Plenge2, Robert M. Plenge1 
20 Feb 2014-Nature
TL;DR: A genome-wide association study meta-analysis in a total of >100,000 subjects of European and Asian ancestries provides empirical evidence that the genetics of RA can provide important information for drug discovery, and sheds light on fundamental genes, pathways and cell types that contribute to RA pathogenesis.
Abstract: A major challenge in human genetics is to devise a systematic strategy to integrate disease-associated variants with diverse genomic and biological data sets to provide insight into disease pathogenesis and guide drug discovery for complex traits such as rheumatoid arthritis (RA)1. Here we performed a genome-wide association study meta-analysis in a total of >100,000 subjects of European and Asian ancestries (29,880 RA cases and 73,758 controls), by evaluating ~10 million single-nucleotide polymorphisms. We discovered 42 novel RA risk loci at a genome-wide level of significance, bringing the total to 101 (refs 2, 3, 4). We devised an in silico pipeline using established bioinformatics methods based on functional annotation5, cis-acting expression quantitative trait loci6 and pathway analyses7, 8, 9—as well as novel methods based on genetic overlap with human primary immunodeficiency, haematological cancer somatic mutations and knockout mouse phenotypes—to identify 98 biological candidate genes at these 101 risk loci. We demonstrate that these genes are the targets of approved therapies for RA, and further suggest that drugs approved for other indications may be repurposed for the treatment of RA. Together, this comprehensive genetic study sheds light on fundamental genes, pathways and cell types that contribute to RA pathogenesis, and provides empirical evidence that the genetics of RA can provide important information for drug discovery.

1,910 citations

Journal ArticleDOI
TL;DR: A detailed description of the design and development of GATE is given by the OpenGATE collaboration, whose continuing objective is to improve, document and validate GATE by simulating commercially available imaging systems for PET and SPECT.
Abstract: Monte Carlo simulation is an essential tool in emission tomography that can assist in the design of new medical imaging devices, the optimization of acquisition protocols and the development or assessment of image reconstruction algorithms and correction techniques. GATE, the Geant4 Application for Tomographic Emission, encapsulates the Geant4 libraries to achieve a modular, versatile, scripted simulation toolkit adapted to the field of nuclear medicine. In particular, GATE allows the description of time-dependent phenomena such as source or detector movement, and source decay kinetics. This feature makes it possible to simulate time curves under realistic acquisition conditions and to test dynamic reconstruction algorithms. This paper gives a detailed description of the design and development of GATE by the OpenGATE collaboration, whose continuing objective is to improve, document and validate GATE by simulating commercially available imaging systems for PET and SPECT. Large effort is also invested in the ability and the flexibility to model novel detection systems or systems still under design. A public release of GATE licensed under the GNU Lesser General Public License can be downloaded at http:/www-lphe.epfl.ch/GATE/. Two benchmarks developed for PET and SPECT to test the installation of GATE and to serve as a tutorial for the users are presented. Extensive validation of the GATE simulation platform has been started, comparing simulations and measurements on commercially available acquisition systems. References to those results are listed. The future prospects towards the gridification of GATE and its extension to other domains such as dosimetry are also discussed.

1,899 citations


Authors

Showing all 109539 results

NameH-indexPapersCitations
Guido Kroemer2361404246571
Pierre Chambon211884161565
Peer Bork206697245427
Ronald M. Evans199708166722
Raymond J. Dolan196919138540
Matthew Meyerson194553243726
Charles A. Dinarello1901058139668
Julie E. Buring186950132967
Tadamitsu Kishimoto1811067130860
Didier Raoult1733267153016
Giuseppe Remuzzi1721226160440
Zena Werb168473122629
Nahum Sonenberg167647104053
Philippe Froguel166820118816
Gordon J. Freeman164579105193
Network Information
Related Institutions (5)
National Institutes of Health
297.8K papers, 21.3M citations

96% related

Johns Hopkins University School of Medicine
79.2K papers, 4.7M citations

95% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

94% related

Icahn School of Medicine at Mount Sinai
76K papers, 3.7M citations

94% related

Karolinska Institutet
121.1K papers, 6M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202368
2022306
20217,549
20207,367
20196,969
20186,607