scispace - formally typeset
Search or ask a question
Institution

Friedrich Loeffler Institute

GovernmentGreifswald, Germany
About: Friedrich Loeffler Institute is a government organization based out in Greifswald, Germany. It is known for research contribution in the topics: Virus & Population. The organization has 1548 authors who have published 4603 publications receiving 133329 citations. The organization is also known as: FLI.


Papers
More filters
Journal ArticleDOI
Joshua Quick1, Nicholas J. Loman1, Sophie Duraffour2, Jared T. Simpson3, Jared T. Simpson4, Ettore Severi5, Ettore Severi6, Lauren A. Cowley, Joseph Akoi Bore2, Raymond Koundouno2, Gytis Dudas7, Amy Mikhail, Nobila Ouedraogo8, Babak Afrough, Amadou Bah9, Jonathan H.J. Baum2, Beate Becker-Ziaja2, Jan Peter Boettcher8, Mar Cabeza-Cabrerizo2, Álvaro Camino-Sánchez2, Lisa L. Carter10, Juliane Doerrbecker2, Theresa Enkirch11, Isabel García-Dorival12, Nicole Hetzelt8, Julia Hinzmann8, Tobias Holm2, Liana E. Kafetzopoulou6, Liana E. Kafetzopoulou13, Michel Koropogui, Abigael Kosgey14, Eeva Kuisma6, Christopher H. Logue6, Antonio Mazzarelli, Sarah Meisel2, Marc Mertens15, Janine Michel8, Didier Ngabo, Katja Nitzsche2, Elisa Pallasch2, Livia Victoria Patrono2, Jasmine Portmann, Johanna Repits16, Natasha Y. Rickett12, Andreas Sachse8, Katrin Singethan17, Inês Vitoriano, Rahel L. Yemanaberhan2, Elsa Gayle Zekeng12, Trina Racine18, Alexander Bello18, Amadou A. Sall19, Ousmane Faye19, Oumar Faye19, N’Faly Magassouba, Cecelia V. Williams20, Victoria Amburgey20, Linda Winona20, Emily Davis21, Jon Gerlach21, Frank Washington21, Vanessa Monteil, Marine Jourdain, Marion Bererd, Alimou Camara, Hermann Somlare, Abdoulaye Camara, Marianne Gerard, Guillaume Bado, Bernard Baillet, Déborah Delaune, Koumpingnin Yacouba Nebie22, Abdoulaye Diarra22, Yacouba Savane22, Raymond Pallawo22, Giovanna Jaramillo Gutierrez23, Natacha Milhano5, Natacha Milhano24, Isabelle Roger22, Christopher Williams, Facinet Yattara, Kuiama Lewandowski, James E. Taylor, Phillip A. Rachwal25, Daniel J. Turner, Georgios Pollakis12, Julian A. Hiscox12, David A. Matthews, Matthew K. O'Shea, Andrew Johnston, Duncan W. Wilson, Emma Hutley, Erasmus Smit6, Antonino Di Caro, Roman Wölfel26, Kilian Stoecker26, Erna Fleischmann26, Martin Gabriel2, Simon A. Weller25, Lamine Koivogui, Boubacar Diallo22, Sakoba Keita, Andrew Rambaut27, Andrew Rambaut7, Pierre Formenty22, Stephan Günther2, Miles W. Carroll 
11 Feb 2016-Nature
TL;DR: This paper presents sequence data and analysis of 142 EBOV samples collected during the period March to October 2015 and shows that real-time genomic surveillance is possible in resource-limited settings and can be established rapidly to monitor outbreaks.
Abstract: A nanopore DNA sequencer is used for real-time genomic surveillance of the Ebola virus epidemic in the field in Guinea; the authors demonstrate that it is possible to pack a genomic surveillance laboratory in a suitcase and transport it to the field for on-site virus sequencing, generating results within 24 hours of sample collection. This paper reports the use of nanopore DNA sequencers (known as MinIONs) for real-time genomic surveillance of the Ebola virus epidemic, in the field in Guinea. The authors demonstrate that it is possible to pack a genomic surveillance laboratory in a suitcase and transport it to the field for on-site virus sequencing, generating results within 24 hours of sample collection. The Ebola virus disease epidemic in West Africa is the largest on record, responsible for over 28,599 cases and more than 11,299 deaths1. Genome sequencing in viral outbreaks is desirable to characterize the infectious agent and determine its evolutionary rate. Genome sequencing also allows the identification of signatures of host adaptation, identification and monitoring of diagnostic targets, and characterization of responses to vaccines and treatments. The Ebola virus (EBOV) genome substitution rate in the Makona strain has been estimated at between 0.87 × 10−3 and 1.42 × 10−3 mutations per site per year. This is equivalent to 16–27 mutations in each genome, meaning that sequences diverge rapidly enough to identify distinct sub-lineages during a prolonged epidemic2,3,4,5,6,7. Genome sequencing provides a high-resolution view of pathogen evolution and is increasingly sought after for outbreak surveillance. Sequence data may be used to guide control measures, but only if the results are generated quickly enough to inform interventions8. Genomic surveillance during the epidemic has been sporadic owing to a lack of local sequencing capacity coupled with practical difficulties transporting samples to remote sequencing facilities9. To address this problem, here we devise a genomic surveillance system that utilizes a novel nanopore DNA sequencing instrument. In April 2015 this system was transported in standard airline luggage to Guinea and used for real-time genomic surveillance of the ongoing epidemic. We present sequence data and analysis of 142 EBOV samples collected during the period March to October 2015. We were able to generate results less than 24 h after receiving an Ebola-positive sample, with the sequencing process taking as little as 15–60 min. We show that real-time genomic surveillance is possible in resource-limited settings and can be established rapidly to monitor outbreaks.

1,187 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes.
Abstract: In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.

1,129 citations

Journal ArticleDOI
TL;DR: Investment in dog vaccination, the single most effective way of reducing the disease burden, has been inadequate and that the availability and affordability of PEP needs improving, demonstrating that collaboration by medical and veterinary sectors could dramatically reduce the current large, and unnecessary, burden of rabies on affected communities.
Abstract: Background Rabies is a notoriously underreported and neglected disease of low-income countries. This study aims to estimate the public health and economic burden of rabies circulating in domestic dog populations, globally and on a country-by-country basis, allowing an objective assessment of how much this preventable disease costs endemic countries.

1,073 citations

Journal ArticleDOI
TL;DR: The anatomical basis of this recovery was investigated and it was found that after incomplete spinal cord injury in rats, transected hindlimb corticospinal tract axons sprouted into the cervical gray matter to contact short and long propriospinal neurons (PSNs).
Abstract: In contrast to peripheral nerves, central axons do not regenerate. Partial injuries to the spinal cord, however, are followed by functional recovery. We investigated the anatomical basis of this recovery and found that after incomplete spinal cord injury in rats, transected hindlimb corticospinal tract (CST) axons sprouted into the cervical gray matter to contact short and long propriospinal neurons (PSNs). Over 12 weeks, contacts with long PSNs that bridged the lesion were maintained, whereas contacts with short PSNs that did not bridge the lesion were lost. In turn, long PSNs arborize on lumbar motor neurons, creating a new intraspinal circuit relaying cortical input to its original spinal targets. We confirmed the functionality of this circuit by electrophysiological and behavioral testing before and after CST re-lesion. Retrograde transynaptic tracing confirmed its integrity, and revealed changes of cortical representation. Hence, after incomplete spinal cord injury, spontaneous extensive remodeling occurs, based on axonal sprout formation and removal. Such remodeling may be crucial for rehabilitation in humans.

1,035 citations

Journal ArticleDOI
TL;DR: This review is focused mainly on the epidemiology and control of neosporosis in cattle, but worldwide seroprevalences of N. caninum in animals and humans are tabulated.
Abstract: Neospora caninum is a protozoan parasite of animals. Until 1988, it was misidentified as Toxoplasma gondii. Since its first recognition in dogs in 1984 and the description of the new genus and species Neospora caninum in 1988, neosporosis has emerged as a serious disease of cattle and dogs worldwide. Abortions and neonatal mortality are a major problem in livestock operations, and neosporosis is a major cause of abortion in cattle. Although antibodies to N. caninum have been reported, the parasite has not been detected in human tissues. Thus, the zoonotic potential is uncertain. This review is focused mainly on the epidemiology and control of neosporosis in cattle, but worldwide seroprevalences of N. caninum in animals and humans are tabulated. The role of wildlife in the life cycle of N. caninum and strategies for the control of neosporosis in cattle are discussed.

977 citations


Authors

Showing all 1567 results

NameH-indexPapersCitations
Hans-Dieter Klenk9334132192
Sven Bergmann8434645238
Thomas C. Mettenleiter7743820863
Martin Müller6843721728
Heiner Niemann6527914241
Martin Beer6560618040
Karsten Becker6434918174
Lothar H. Wieler6223815200
Stefan Schwarz5920712184
Martin H. Groschup5832211161
Axel Haase5735618594
Franz Josef Conraths553269302
Barbara G. Klupp541557857
Tetsuya Hayashi5428618423
Kyung Jin Lee5138610386
Network Information
Related Institutions (5)
University of Veterinary Medicine Vienna
14.6K papers, 338.4K citations

90% related

University of Hohenheim
16.4K papers, 567.3K citations

85% related

University of Giessen
43.7K papers, 1.3M citations

84% related

Institut national de la recherche agronomique
68.3K papers, 3.2M citations

84% related

Norwegian University of Life Sciences
13.5K papers, 442.2K citations

84% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20235
202229
2021421
2020435
2019329
2018295