scispace - formally typeset
Search or ask a question
Institution

Fritz Haber Institute of the Max Planck Society

FacilityBerlin, Germany
About: Fritz Haber Institute of the Max Planck Society is a facility organization based out in Berlin, Germany. It is known for research contribution in the topics: Catalysis & Adsorption. The organization has 3490 authors who have published 5017 publications receiving 183731 citations. The organization is also known as: Fritz Haber Institute of the Max Planck Society.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the size range of 2-5 nm was synthesized by a yeast strain MKY3, when challenged with 1 mM soluble silver in the log phase of growth and the nanoparticles were separated from dilute suspension by devising a new method based on differential thawing of the sample.
Abstract: Silver nanoparticles in the size range of 2-5 nm were synthesized extracellularly by a silver-tolerant yeast strain MKY3, when challenged with 1 mM soluble silver in the log phase of growth. The nanoparticles were separated from dilute suspension by devising a new method based on differential thawing of the sample. Optical absorption, transmission electron microscopy, x-ray diffraction and x-ray photoelectron spectroscopy investigations confirmed that metallic (elemental) silver nanoparticles were formed. Extracellular synthesis of nanoparticles could be highly advantageous from the point of view of synthesis in large quantities and easy downstream processing.

750 citations

Journal ArticleDOI
TL;DR: In this article, a review discusses how CO 2 surface chemistry has developed since the early 1950s, focusing on studies of well-characterized surfaces of metals, oxides and some more complex systems involving in particular alkali modified surfaces and also of coadsorbed molecules.

745 citations

Journal ArticleDOI
04 Mar 2019
TL;DR: In this article, the authors discuss strategies to achieve high selectivity towards multicarbon products via rational catalyst and electrolyte design, focusing on findings extracted from in situ and operando characterizations.
Abstract: The CO2 electroreduction reaction (CO2RR) to fuels and feedstocks is an attractive route to close the anthropogenic carbon cycle and store renewable energy. The generation of more reduced chemicals, especially multicarbon oxygenate and hydrocarbon products (C2+) with higher energy densities, is highly desirable for industrial applications. However, selective conversion of CO2 to C2+ suffers from a high overpotential, a low reaction rate and low selectivity, and the process is extremely sensitive to the catalyst structure and electrolyte. Here we discuss strategies to achieve high C2+ selectivity through rational design of the catalyst and electrolyte. Current state-of-the-art catalysts, including Cu and Cu–bimetallic catalysts, as well as some alternative materials, are considered. The importance of taking into consideration the dynamic evolution of the catalyst structure and composition are highlighted, focusing on findings extracted from in situ and operando characterizations. Additional theoretical insight into the reaction mechanisms underlying the improved C2+ selectivity of specific catalyst geometries and compositions in synergy with a well-chosen electrolyte are also provided. The electrochemical reduction of carbon dioxide to fuels and feedstocks has received increased attention over the past few years. In this Review, Roldan Cuenya and co-workers discuss strategies to achieve high selectivity towards multicarbon products via rational catalyst and electrolyte design.

719 citations

Journal ArticleDOI
TL;DR: In this article, the authors define requirements for a suitable descriptor and demonstrate how a meaningful descriptor can be found systematically, for a classic example, the energy difference of zinc blende or wurtzite and rocksalt semiconductors.
Abstract: Statistical learning of materials properties or functions so far starts with a largely silent, nonchallenged step: the choice of the set of descriptive parameters (termed descriptor). However, when the scientific connection between the descriptor and the actuating mechanisms is unclear, the causality of the learned descriptor-property relation is uncertain. Thus, a trustful prediction of new promising materials, identification of anomalies, and scientific advancement are doubtful. We analyze this issue and define requirements for a suitable descriptor. For a classic example, the energy difference of zinc blende or wurtzite and rocksalt semiconductors, we demonstrate how a meaningful descriptor can be found systematically.

641 citations

Journal ArticleDOI
TL;DR: In this article, combined IR reflection-absorption and LEED studies of the room temperature adsorption of carbon monoxide on the (100), (111) and (210) surfaces of palladium are reported.

634 citations


Authors

Showing all 3514 results

NameH-indexPapersCitations
Jens K. Nørskov184706146151
Qiang Zhang1611137100950
William A. Goddard1511653123322
Matthias Scheffler12575261011
Tao Zhang123277283866
Gerhard Ertl12072057560
James A. Dumesic11861558935
Angel Rubio11093052731
Pavel Hobza10756448080
Hans-Joachim Freund10696246693
Xinhe Bao10382846524
Peter Strasser10035737374
Dang Sheng Su9961536117
Robert Schlögl9270633795
Gianfranco Pacchioni9162232262
Network Information
Related Institutions (5)
Forschungszentrum Jülich
35.6K papers, 994.1K citations

83% related

Argonne National Laboratory
64.3K papers, 2.4M citations

82% related

University of Stuttgart
56.3K papers, 1.3M citations

81% related

Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

81% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20236
202271
2021242
2020236
2019209
2018173